## МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Управление образования администации Ростовского муниципального района

Муниципальное общеобразовательное учреждение средняя общеобразовательная школа №4 г. Ростова

**PACCMOTPEHO** СОГЛАСОВАНО **УТВЕРЖДЕНО** 

Руководитель На педагогическом Директор

МОУ СОШ №4\_ совете школьного

Сергеев С.В. методического Председатель

Приказа №174 объединения педагогического совета

Мячина Г.В. Запруднова И.Н.

Протокол №1 от «28» Протокол №1

от «27» августа 2025 г. августа 2025 г.

#### РАБОЧАЯ ПРОГРАММА

(ID 8896744)

## учебного предмета «Биология. Углубленный уровень»

для обучающихся 10 классов

Составитель: Бирюкова Т.А.

от «1» сентября 2025 г.

#### ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по учебному предмету "Биология" (далее - биология) на уровне среднего общего образования разработана на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», ФГОС СОО, Концепции преподавания учебного предмета «Биология» и основных положений федеральной рабочей программы воспитания.

Учебный предмет «Биология» углублённого уровня изучения (10–11 классы) является одним из компонентов предметной области «Естественно-научные предметы». Согласно положениям ФГОС СОО профильные учебные предметы, изучаемые на углублённом уровне, являются способом дифференциации обучения на уровне среднего общего образования и призваны обеспечить преемственность между основным общим, средним общим, средним профессиональным и высшим образованием. В то же время каждый из этих учебных предметов должен быть ориентирован на приоритетное решение образовательных, воспитательных и развивающих задач, связанных с профориентацией обучающихся и стимулированием интереса к конкретной области научного знания, связанного с биологией, медициной, экологией, психологией, спортом или военным делом.

Программа по учебному предмету "Биология" даёт представление о цели и задачах изучения учебного предмета «Биология» на углублённом уровне, определяет обязательное (инвариантное) предметное содержание, его структурирование по разделам и темам, распределение по классам, рекомендует последовательность изучения учебного материала с учётом межпредметных и внутрипредметных связей, логики учебного процесса, особенностей обучающихся. В программе реализован принцип преемственности с изучением биологии на уровне общего образования, благодаря просматривается основного чему направленность на последующее развитие биологических знаний, ориентированных на формирование естественно-научного мировоззрения, экологического мышления, представлений о здоровом образе жизни, на воспитание бережного отношения к окружающей природной среде. В программе по биологии также показаны возможности учебного предмета «Биология» в реализации требований ΦΓΟС COO К планируемым личностным, метапредметным и предметным результатам обучения и в основных видов учебно-познавательной формировании деятельности обучающихся по освоению содержания биологического образования на уровне среднего общего образования.

Учебный предмет «Биология» на уровне среднего общего образования завершает биологическое образование в школе и ориентирован на

расширение и углубление знаний обучающихся о живой природе, основах молекулярной и клеточной биологии, эмбриологии и биологии развития, генетики, селекции, биотехнологии, эволюционного учения и экологии.

Изучение учебного предмета «Биология» на углубленном уровне ориентировано на подготовку обучающихся к последующему получению биологического образования В вузах И организациях среднего профессионального образования. Основу его содержания составляет система биологических знаний, полученных при изучении обучающимися соответствующих систематических разделов биологии на уровне основного общего образования, в 10–11 классах эти знания получают развитие. Так, расширены и углублены биологические знания о растениях, животных, грибах, бактериях, организме человека, общих закономерностях жизни, дополнительно включены биологические сведения прикладного и поискового характера, которые можно использовать как ориентиры для последующего выбора профессии. Возможна также интеграция биологических знаний с соответствующими знаниями, полученными обучающимися при изучении физики, химии, географии и математики.

Структура программы по учебному предмету "Биология" отражает системно-уровневый и эволюционный подходы к изучению биологии. Согласно им, изучаются свойства и закономерности, характерные для живых систем разного уровня организации, эволюции органического мира на Земле, сохранения биологического разнообразия планеты. Так, в 10 классе изучаются основы молекулярной и клеточной биологии, эмбриологии и биологии развития, генетики и селекции, биотехнологии и синтетической биологии, актуализируются знания обучающихся по ботанике, зоологии, анатомии, физиологии человека. В 11 классе изучаются эволюционное учение, основы экологии и учение о биосфере.

Учебный предмет «Биология» призван обеспечить освоение обучающимися биологических теорий и законов, идей, принципов и правил, лежащих в основе современной естественно-научной картины мира, знаний о строении, многообразии и особенностях клетки, организма, популяции, биоценоза, экосистемы, о выдающихся научных достижениях, современных исследованиях в биологии, прикладных аспектах биологических знаний. Для развития и поддержания интереса обучающихся к биологии наряду со значительным объёмом теоретического материала в содержании программы по биологии предусмотрено знакомство с историей становления и развития той или иной области биологии, вкладом отечественных и зарубежных учёных в решение важнейших биологических и экологических проблем.

Цель изучения учебного предмета «Биология» на углублённом уровне — овладение обучающимися знаниями о структурно-функциональной организации живых систем разного ранга и приобретение умений использовать эти знания в формировании интереса к определённой области профессиональной деятельности, связанной с биологией, или к выбору учебного заведения для продолжения биологического образования.

Достижение цели изучения учебного предмета «Биология» на углублённом уровне обеспечивается решением следующих задач:

освоение обучающимися системы биологических знаний: об основных биологических теориях, концепциях, гипотезах, законах, закономерностях и правилах, составляющих современную естественно-научную картину мира; о строении, многообразии и особенностях биологических систем (клетка, организм, популяция, вид, биогеоценоз, биосфера); о выдающихся открытиях и современных исследованиях в биологии;

ознакомление обучающихся с методами познания живой природы: биологических исследовательскими методами наук (молекулярной клеточной биологии, эмбриологии и биологии развития, биотехнологии И синтетической биологии, селекции, палеонтологии, самостоятельного биологических экологии); методами проведения исследований в лаборатории и в природе (наблюдение, измерение, эксперимент, моделирование);

самостоятельно овладение обучающимися умениями: находить, анализировать и использовать биологическую информацию; пользоваться биологической терминологией и символикой; устанавливать связь между развитием биологии и социально-экономическими и экологическими проблемами человечества; оценивать последствия своей деятельности по отношению к окружающей природной среде, собственному здоровью и здоровью окружающих людей; обосновывать И соблюдать профилактики инфекционных заболеваний, правила поведения в природе и обеспечения безопасности собственной жизнедеятельности в чрезвычайных ситуациях природного техногенного характера; характеризовать И современные научные открытия в области биологии;

развитие у обучающихся интеллектуальных и творческих способностей в процессе знакомства с выдающимися открытиями и современными исследованиями в биологии, решаемыми ею проблемами, методологией биологического исследования, проведения экспериментальных исследований, решения биологических задач, моделирования биологических объектов и процессов;

воспитание у обучающихся ценностного отношения к живой природе в целом и к отдельным её объектам и явлениям; формирование экологической, генетической грамотности, общей культуры поведения в природе; интеграции естественно-научных знаний;

приобретение обучающимися компетентности рациональном природопользовании (соблюдение правил поведения в природе, охраны видов, экосистем, биосферы), сохранении собственного здоровья и здоровья людей (соблюдения профилактики окружающих мер заболеваний, обеспечение безопасности жизнедеятельности в чрезвычайных ситуациях природного И техногенного характера) на основе использования биологических знаний и умений в повседневной жизни;

создание условий для осознанного выбора обучающимися индивидуальной образовательной траектории, способствующей последующему профессиональному самоопределению, в соответствии с индивидуальными интересами и потребностями региона.

Общее число часов, отведенных на изучение биологии на углубленном уровне среднего общего образования, составляет 204 часа: в 10 классе – 102 часа (3 часа в неделю), в 11 классе – 102 часа (3 часа в неделю).

Отбор организационных форм, методов и средств обучения биологии осуществляется с учётом специфики его содержания и направленности на продолжение биологического образования в организациях среднего профессионального и высшего образования.

Обязательным условием при обучении биологии на углублённом уровне является проведение лабораторных и практических работ. Также участие обучающихся в выполнении проектных и учебно-исследовательских работ, тематика которых определяется учителем на основе имеющихся материально-технических ресурсов и местных природных условий.

## СОДЕРЖАНИЕ ОБУЧЕНИЯ 10 КЛАСС

Содержание программы, выделенное *курсивом*, не входит в проверку государственной итоговой аттестации (ГИА).

#### Тема 1. Биология как наука

Современная биология – комплексная наука. Краткая история развития биологии. Биологические науки и изучаемые ими проблемы. Фундаментальные, прикладные и поисковые научные исследования в биологии.

Значение биологии в формировании современной естественно-научной картины мира. Профессии, связанные с биологией. Значение биологии в практической деятельности человека: медицине, сельском хозяйстве, промышленности, охране природы.

#### Демонстрации

Портреты: Аристотель, Теофраст, К. Линней, Ж. Б. Ламарк, Ч. Дарвин, У. Гарвей, Г. Мендель, В. И. Вернадский, И. П. Павлов, И. И. Мечников, Н. И. Вавилов, Н. В. Тимофеев-Ресовский, Дж. Уотсон, Ф. Крик, Д. К. Беляев.

Таблицы и схемы: «Связь биологии с другими науками», «Система биологических наук».

#### Тема 2. Живые системы и их изучение

Живые системы как предмет изучения биологии. Свойства живых систем: единство химического состава, дискретность и целостность, сложность и упорядоченность структуры, открытость, самоорганизация, самовоспроизведение, раздражимость, изменчивость, рост и развитие.

Уровни организации живых систем: молекулярный, клеточный, тканевый, организменный, популяционно-видовой, экосистемный (биогеоценотический), биосферный. Процессы, происходящие в живых системах. Основные признаки живого. Жизнь как форма существования материи. Науки, изучающие живые системы на разных уровнях организации.

Изучение живых систем. Методы биологической науки. Наблюдение, измерение, эксперимент, систематизация, метаанализ. Понятие о зависимой и независимой переменной. Планирование эксперимента. Постановка и проверка гипотез. Нулевая гипотеза. Понятие выборки и её достоверность. Разброс в биологических данных. Оценка достоверности полученных результатов. Причины искажения результатов эксперимента. Понятие статистического теста.

## Демонстрации

Таблицы и схемы: «Основные признаки жизни», «Биологические системы», «Свойства живой материи», «Уровни организации живой

природы», «Строение животной клетки», «Ткани животных», «Системы органов человеческого организма», «Биогеоценоз», «Биосфера», «Методы изучения живой природы».

Оборудование: лабораторное оборудование для проведения наблюдений, измерений, экспериментов.

**Практическая работа** «Использование различных методов при изучении живых систем».

#### Тема 3. Биология клетки

Клетка — структурно-функциональная единица живого. История открытия клетки. Работы Р. Гука, А. Левенгука. Клеточная теория (Т. Шванн, М. Шлейден, Р. Вирхов). Основные положения современной клеточной теории.

Методы молекулярной и клеточной биологии: микроскопия, хроматография, электрофорез, метод меченых атомов, дифференциальное центрифугирование, культивирование клеток. *Изучение фиксированных клеток*. Электронная микроскопия. *Конфокальная микроскопия*. *Витальное (прижизненное) изучение клеток*.

#### Демонстрации

Портреты: Р. Гук, А. Левенгук, Т. Шванн, М. Шлейден, Р. Вирхов, К. М. Бэр.

Таблицы и схемы: «Световой микроскоп», «Электронный микроскоп», «История развития методов микроскопии».

Оборудование: световой микроскоп, микропрепараты растительных, животных и бактериальных клеток.

**Практическая работа** «Изучение методов клеточной биологии (хроматография, электрофорез, дифференциальное центрифугирование, ПЦР)».

## Тема 4. Химическая организация клетки

Химический состав клетки. Макро-, микро- и ультрамикроэлементы. Вода и её роль как растворителя, реагента, участие в структурировании клетки, теплорегуляции. Минеральные вещества клетки, их биологическая роль. Роль катионов и анионов в клетке.

Органические вещества клетки. Биологические полимеры. Белки. Аминокислотный состав белков. Структуры белковой молекулы. Первичная структура белка, пептидная связь. Вторичная, третичная, четвертичная структуры. Денатурация. Свойства белков. Классификация белков. Биологические функции белков. Прионы.

Углеводы. Моносахариды, дисахариды, олигосахариды и полисахариды. Общий план строения и физико-химические свойства углеводов. Биологические функции углеводов.

Липиды. Гидрофильно-гидрофобные свойства. Классификация липидов. Триглицериды, фосфолипиды, воски, стероиды. Биологические функции липидов. Общие свойства биологических мембран — текучесть, способность к самозамыканию, полупроницаемость.

Нуклеиновые кислоты. ДНК и РНК. Строение нуклеиновых кислот. Нуклеотиды. Принцип комплементарности. Правило Чаргаффа. Структура ДНК – двойная спираль. Местонахождение и биологические функции ДНК. Виды РНК. Функции РНК в клетке.

Строение молекулы АТФ. Макроэргические связи в молекуле АТФ. Биологические функции АТФ. Восстановленные переносчики, их функции в клетке. Другие нуклеозидтрифосфаты (НТФ). Секвенирование ДНК. Методы геномики, транскриптомики, протеомики.

Структурная биология: биохимические и биофизические исследования состава и пространственной структуры биомолекул. *Моделирование* структуры и функций биомолекул и их комплексов. Компьютерный дизайн и органический синтез биомолекул и их неприродных аналогов.

#### Демонстрации

Портреты: Л. Полинг, Дж. Уотсон, Ф. Крик, М. Уилкинс, Р. Франклин, Ф. Сэнгер, С. Прузинер.

Диаграммы: «Распределение химических элементов в неживой природе», «Распределение химических элементов в живой природе».

Таблицы и схемы: «Периодическая таблица химических элементов», «Строение молекулы воды», «Вещества в составе организмов», «Строение молекулы белка», «Структуры белковой молекулы», «Строение молекул углеводов», «Строение молекул липидов», «Нуклеиновые кислоты», «Строение молекулы АТФ».

Оборудование: химическая посуда и оборудование.

**Лабораторная работа** «Обнаружение белков с помощью качественных реакций».

**Лабораторная работа** «Исследование нуклеиновых кислот, выделенных из клеток различных организмов».

## Тема 5. Строение и функции клетки

Типы клеток: эукариотическая и прокариотическая. Структурнофункциональные образования клетки.

Строение прокариотической клетки. Клеточная стенка бактерий и архей. Особенности строения гетеротрофной и автотрофной прокариотических клеток. Место и роль прокариот в биоценозах.

Строение функционирование эукариотической И клетки. Плазматическая мембрана (плазмалемма). Структура плазматической мембраны. Транспорт веществ через плазматическую мембрану: пассивный (диффузия, облегчённая диффузия), активный (первичный и вторичный активный транспорт). Полупроницаемость мембраны. Работа натрийкалиевого насоса. Эндоцитоз: пиноцитоз, фагоцитоз. Экзоцитоз. Клеточная стенка. Структура и функции клеточной стенки растений, грибов.

Цитоплазма. Цитозоль. Цитоскелет. Движение цитоплазмы. Органоиды клетки. Одномембранные органоиды клетки: эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы, их строение и функции. Взаимосвязь одномембранных органоидов клетки. Строение гранулярного ретикулума. Механизм направления белков в ЭПС. Синтез растворимых белков. Синтез клеточных мембран. Гладкий (агранулярный) эндоплазматический ретикулум. Секреторная функция аппарата Гольджи. Модификация белков в аппарате Гольджи. Сортировка белков в аппарате Гольджи. Транспорт веществ в клетке. Вакуоли растительных клеток. Клеточный сок. Тургор.

Полуавтономные органоиды клетки: митохондрии, пластиды. *Происхождение митохондрий и пластид*. *Симбиогенез (К.С. Мережковский, Л. Маргулис)*. Строение и функции митохондрий и пластид. Первичные, вторичные и сложные пластиды фотосинтезирующих эукариот. Хлоропласты, хромопласты, лейкопласты высших растений.

Немембранные органоиды клетки Строение и функции немембранных органоидов клетки. Рибосомы. *Промежуточные филаменты*. Микрофиламенты. *Актиновые микрофиламенты*. Мышечные клетки. *Актиновые компоненты немышечных клеток*. Микротрубочки. Клеточный центр. Строение и движение жгутиков и ресничек. Микротрубочки цитоплазмы. Центриоль. *Белки*, *ассоциированные с микрофиламентами и микротрубочками*. *Моторные белки*.

Ядро. Оболочка ядра, хроматин, кариоплазма, ядрышки, их строение и функции. Ядерный белковый матрикс. Пространственное расположение хромосом в интерфазном ядре. *Эухроматин и гетерохроматин*. Белки хроматина — гистоны. *Динамика ядерной оболочки в митозе*. *Ядерный транспорт*.

Клеточные включения. Сравнительная характеристика клеток эукариот (растительной, животной, грибной).

#### Демонстрации

Портреты: К.С. Мережковский, Л. Маргулис.

Таблицы и схемы: «Строение эукариотической клетки», «Строение животной клетки», «Строение растительной клетки», «Строение митохондрии», «Ядро», «Строение прокариотической клетки».

Оборудование: световой микроскоп, микропрепараты растительных, животных клеток, микропрепараты бактериальных клеток.

**Лабораторная работа** «Изучение строения клеток различных организмов».

**Практическая работа** «Изучение свойств клеточной мембраны».

**Лабораторная работа** «Исследование плазмолиза и деплазмолиза в растительных клетках».

**Практическая работа** «Изучение движения цитоплазмы в растительных клетках».

#### Тема 6. Обмен веществ и превращение энергии в клетке

Ассимиляция и диссимиляция – две стороны метаболизма. Типы обмена веществ: автотрофный и гетеротрофный. Участие кислорода в обменных процессах. Энергетическое обеспечение клетки: превращение АТФ в обменных процессах. Ферментативный характер реакций клеточного метаболизма. Ферменты, их строение, свойства и механизм действия. Коферменты. Отличия ферментов от неорганических катализаторов. Белки-активаторы и белки-ингибиторы. Зависимость скорости ферментативных реакций от различных факторов.

Первичный синтез органических веществ в клетке. Фотосинтез. Аноксигенный и оксигенный фотосинтез у бактерий. Светособирающие пигменты и пигменты реакционного центра. Роль хлоропластов в процессе фотосинтеза. Световая и темновая фазы. Фотодыхание,  $C_{3-}$ ,  $C_{4-}$  и САМ-типы фотосинтеза. Продуктивность фотосинтеза. Влияние различных факторов на скорость фотосинтеза. Значение фотосинтеза.

Хемосинтез. Разнообразие организмов-хемосинтетиков: нитрифицирующие бактерии, железобактерии, серобактерии, водородные бактерии. Значение хемосинтеза.

Анаэробные организмы. Виды брожения. Продукты брожения и их использование человеком. Анаэробные микроорганизмы как объекты биотехнологии и возбудители болезней.

Аэробные организмы. Этапы энергетического обмена. Подготовительный этап. Гликолиз – бескислородное расщепление глюкозы.

Биологическое окисление, или клеточное дыхание. Роль митохондрий в процессах биологического окисления. Циклические реакции. Окислительное фосфорилирование. Энергия мембранного градиента протонов. Синтез

*АТФ: работа протонной АТФ-синтазы.* Преимущества аэробного пути обмена веществ перед анаэробным. Эффективность энергетического обмена.

#### Демонстрации

Портреты: Дж. Пристли, К. А. Тимирязев, С. Н. Виноградский, В. А. Энгельгардт, П. Митчелл, Г. А. Заварзин.

Таблицы и схемы: «Фотосинтез», «Энергетический обмен», «Биосинтез белка», «Строение фермента», «Хемосинтез».

Оборудование: световой микроскоп, оборудование для приготовления постоянных и временных микропрепаратов.

**Лабораторная работа** «Изучение каталитической активности ферментов (на примере амилазы или каталазы)».

**Лабораторная работа** «Изучение ферментативного расщепления пероксида водорода в растительных и животных клетках».

**Лабораторная работа** «Сравнение процессов фотосинтеза и хемосинтеза».

**Лабораторная работа** «Сравнение процессов брожения и дыхания».

## Тема 7. Наследственная информация и реализация её в клетке

Реакции матричного синтеза. Принцип комплементарности в реакциях матричного синтеза. Реализация наследственной информации. Генетический код, его свойства. Транскрипция — матричный синтез РНК. Принципы транскрипции: комплементарность, антипараллельность, асимметричность. Созревание матричных РНК в эукариотической клетке. Некодирующие РНК.

Трансляция и её этапы. Участие транспортных РНК в биосинтезе белка. Условия биосинтеза белка. Кодирование аминокислот. Роль рибосом в биосинтезе белка.

Современные представления о строении генов. Организация генома у прокариот и эукариот. Регуляция активности генов у прокариот. Гипотеза оперона (Ф. Жакоб, Ж. Мано). Молекулярные механизмы экспрессии генов у эукариот. Роль хроматина в регуляции работы генов. Регуляция обменных процессов в клетке. Клеточный гомеостаз.

Вирусы – неклеточные формы жизни и облигатные паразиты. Строение простых и сложных вирусов, ретровирусов, бактериофагов. Жизненный цикл ДНК-содержащих вирусов, РНК-содержащих вирусов, бактериофагов. Обратная транскрипция, ревертаза, интеграза.

Вирусные заболевания человека, животных, растений. СПИД, COVID-19, социальные и медицинские проблемы.

Биоинформатика: интеграция и анализ больших массивов («bigdata») структурных биологических данных. Нанотехнологии в биологии и медицине. Программируемые функции белков. Способы доставки лекарств.

#### Демонстрации

Портреты: Н. К. Кольцов, Д. И. Ивановский.

Таблицы и схемы: «Биосинтез белка», «Генетический код», «Вирусы», «Бактериофаги».

**Практическая работа** «Создание модели вируса».

#### Тема 8. Жизненный цикл клетки

Клеточный цикл, его периоды и регуляция. Интерфаза и митоз. Особенности процессов, протекающих в интерфазе. Подготовка клетки к делению. Пресинтетический (постмитотический), синтетический и постсинтетический (премитотический) периоды интерфазы.

Матричный синтез ДНК – репликация. Принципы репликации ДНК: комплементарность, полуконсервативный синтез, антипараллельность. Механизм репликации ДНК. Хромосомы. Строение хромосом. Теломеры и теломераза. Хромосомный набор клетки – кариотип. Диплоидный и гаплоидный наборы хромосом. Гомологичные хромосомы. Половые хромосомы.

Деление клетки — митоз. Стадии митоза и происходящие в них процессы. Типы митоза. Кариокинез и цитокинез. Биологическое значение митоза.

Регуляция митотического цикла клетки. Программируемая клеточная гибель – апоптоз.

Клеточное ядро, хромосомы, функциональная геномика. *Механизмы* пролиферации, дифференцировки, старения и гибели клеток. «Цифровая клетка» – биоинформатические модели функционирования клетки.

## Демонстрации

Таблицы и схемы: «Жизненный цикл клетки», «Митоз», «Строение хромосом», «Репликация ДНК».

Оборудование: световой микроскоп, микропрепараты: «Митоз в клетках корешка лука».

**Лабораторная работа** «Изучение хромосом на готовых микропрепаратах».

**Лабораторная работа** «Наблюдение митоза в клетках кончика корешка лука (на готовых микропрепаратах)».

## Тема 9. Строение и функции организмов

Биологическое разнообразие организмов. Одноклеточные, колониальные, многоклеточные организмы.

Особенности строения и жизнедеятельности одноклеточных организмов. Бактерии, археи, одноклеточные грибы, одноклеточные водоросли, другие протисты. Колониальные организмы.

Взаимосвязь частей многоклеточного организма. Ткани, органы и системы органов. Организм как единое целое. Гомеостаз.

Ткани растений. Типы растительных тканей: образовательная, покровная, проводящая, основная, механическая. Особенности строения, функций и расположения тканей в органах растений.

Ткани животных и человека. Типы животных тканей: эпителиальная, соединительная, мышечная, нервная. Особенности строения, функций и расположения тканей в органах животных и человека.

Органы. Вегетативные и генеративные органы растений. Органы и системы органов животных и человека. Функции органов и систем органов.

Опора тела организмов. Каркас растений. Скелеты одноклеточных и многоклеточных животных. Наружный и внутренний скелет. Строение и типы соединения костей.

Движение организмов. Движение одноклеточных организмов: амёбоидное, жгутиковое, ресничное. Движение многоклеточных растений: тропизмы и настии. Движение многоклеточных животных и человека: мышечная система. Рефлекс. Скелетные мышцы и их работа.

Питание организмов. Поглощение воды, углекислого газа и минеральных веществ растениями. Питание животных. Внутриполостное и внутриклеточное пищеварение. Питание позвоночных животных. Отделы пищеварительного тракта. Пищеварительные железы. Пищеварительная система человека.

Дыхание организмов. Дыхание растений. Дыхание животных. Диффузия газов через поверхность клетки. Кожное дыхание. Дыхательная поверхность. Жаберное и лёгочное дыхание. Дыхание позвоночных животных и человека. Эволюционное усложнение строения лёгких позвоночных животных. Дыхательная система человека. Механизм вентиляции лёгких у птиц и млекопитающих. Регуляция дыхания. Дыхательные объёмы.

Транспорт веществ у организмов. Транспортные системы растений. Транспорт веществ у животных. Кровеносная система и её органы. Кровеносная система позвоночных животных и человека. Сердце, кровеносные сосуды и кровь. Круги кровообращения. Эволюционные усложнения строения кровеносной системы позвоночных животных. Работа сердца и её регуляция.

Выделение у организмов. Выделение у растений. Выделение у животных. Сократительные вакуоли. Органы выделения. Фильтрация, секреция и обратное всасывание как механизмы работы органов выделения. Связь полости тела с кровеносной и выделительной системами. Выделение у

позвоночных животных и человека. Почки. Строение и функционирование нефрона. Образование мочи у человека.

Защита у организмов. Защита у одноклеточных организмов. Споры бактерий и цисты простейших. Защита у многоклеточных растений. Кутикула. Средства пассивной и химической защиты. Фитонциды.

Защита у многоклеточных животных. Покровы и их производные. Защита организма от болезней. Иммунная система человека. Клеточный и гуморальный иммунитет. Врождённый и приобретённый специфический иммунитет. Теория клонально-селективного иммунитета (П. Эрлих, Ф. М. Бернет, С. Тонегава). Воспалительные ответы организмов. Роль врождённого иммунитета в развитии системных заболеваний.

Раздражимость и регуляция у организмов. Раздражимость у одноклеточных организмов. Таксисы. Раздражимость и регуляция у растений. Ростовые вещества и их значение.

Нервная система и рефлекторная регуляция у животных. Нервная система и её отделы. Эволюционное усложнение строения нервной системы у животных. Отделы головного мозга позвоночных животных. Рефлекс и рефлекторная дуга. Безусловные и условные рефлексы.

Гуморальная регуляция и эндокринная система животных и человека. Железы эндокринной системы и их гормоны. Действие гормонов. Взаимосвязь нервной и эндокринной систем. Гипоталамо-гипофизарная система.

#### Демонстрации

Портрет: И. П. Павлов.

Таблицы и схемы: «Одноклеточные водоросли», «Многоклеточные водоросли», «Бактерии», «Простейшие», «Органы цветковых растений», позвоночных «Внутреннее «Системы органов животных», насекомых», «Ткани растений», «Корневые системы», «Строение стебля», «Строение листовой пластинки», «Ткани животных», «Скелет человека», «Кровеносная «Пищеварительная система», система», «Дыхательная «Кожа», «Мышечная система», «Нервная система», система», «Выделительная система», «Эндокринная система», «Строение мышцы», «Схема «Иммунитет», «Кишечнополостные», питания растений», «Кровеносные системы позвоночных животных», «Строение гидры», «Строение планарии», «Внутреннее строение дождевого червя», «Нервная система рыб», «Нервная система лягушки», «Нервная система «Нервная пресмыкающихся», «Нервная птиц», система система млекопитающих», «Нервная система человека», «Рефлекс».

Оборудование: световой микроскоп, микропрепараты одноклеточных организмов, микропрепараты тканей, раковины моллюсков, коллекции насекомых, иглокожих, живые экземпляры комнатных растений, гербарии растений разных отделов, влажные препараты животных, скелеты позвоночных, коллекции беспозвоночных животных, скелет человека, оборудование для демонстрации почвенного и воздушного питания растений, расщепления крахмала и белков под действием ферментов, оборудование для демонстрации опытов по измерению жизненной ёмкости лёгких, механизма дыхательных движений, модели головного мозга различных животных.

Лабораторная работа «Изучение тканей растений».

Лабораторная работа «Изучение тканей животных».

**Лабораторная работа** «Изучение органов цветкового растения».

#### Тема 10. Размножение и развитие организмов

Формы размножения организмов: бесполое (включая вегетативное) и половое. Виды бесполого размножения: почкование, споруляция, фрагментация, клонирование.

Половое размножение. Половые клетки, или гаметы. Мейоз. Стадии мейоза. Поведение хромосом в мейозе. Кроссинговер. Биологический смысл мейоза и полового процесса. Мейоз и его место в жизненном цикле организмов.

Предзародышевое развитие. Гаметогенез у животных. Половые железы. Образование и развитие половых клеток. Сперматогенез и оогенез. Строение половых клеток.

Оплодотворение и эмбриональное развитие животных. Способы оплодотворения: наружное, внутреннее. Партеногенез.

Индивидуальное развитие организмов (онтогенез). Эмбриология – наука о развитии организмов. Морфогенез – одна из главных проблем эмбриологии. Концепция морфогенов и модели морфогенеза. Стадии эмбриогенеза лягушки). Дробление. Типы животных примере дробления. Детерминированное и недерминированное дробление. Бластула, бластул. Особенности дробления млекопитающих. Зародышевые листки (гаструляция). Закладка органов и тканей из зародышевых листков. Взаимное влияние частей развивающегося зародыша (эмбриональная индукция). плана строения животного как результат иерархических взаимодействий генов. Влияние на эмбриональное развитие различных факторов окружающей среды.

Рост и развитие животных. Постэмбриональный период. Прямое и непрямое развитие. Развитие с метаморфозом у беспозвоночных и позвоночных животных. Биологическое значение прямого и непрямого

развития, их распространение в природе. Типы роста животных. Факторы регуляции роста животных и человека. Стадии постэмбрионального развития у животных и человека. Периоды онтогенеза человека. Старение и смерть как биологические процессы.

Размножение и развитие растений. Гаметофит и спорофит. Мейоз в жизненном цикле растений. Образование спор в процессе мейоза. Гаметогенез у растений. Оплодотворение и развитие растительных организмов. Двойное оплодотворение у цветковых растений. Образование и развитие семени.

Механизмы регуляции онтогенеза у растений и животных.

## Демонстрации

Портреты: С. Г. Навашин, Х. Шпеман.

Таблицы и схемы: «Вегетативное размножение», «Типы бесполого размножения», «Размножение хламидомонады», «Размножение эвглены», «Размножение гидры», «Мейоз», «Хромосомы», «Гаметогенез», «Строение яйцеклетки и сперматозоида», «Основные стадии онтогенеза», «Прямое и непрямое развитие», «Развитие майского жука», «Развитие саранчи», «Развитие лягушки», «Двойное оплодотворение у цветковых растений», «Строение семян однодольных и двудольных растений», «Жизненный цикл морской капусты», «Жизненный цикл мха», «Жизненный цикл папоротника», «Жизненный цикл сосны».

Оборудование: световой микроскоп, микропрепараты яйцеклеток и сперматозоидов, модель «Цикл развития лягушки».

**Лабораторная работа** «Изучение строения половых клеток на готовых микропрепаратах».

**Практическая работа** «Выявление признаков сходства зародышей позвоночных животных».

**Лабораторная работа** «Строение органов размножения высших растений».

# **Тема 11.** Генетика – наука о наследственности и изменчивости организмов

История становления и развития генетики как науки. Работы Г. Менделя, Г. де Фриза, Т. Моргана. Роль отечественных учёных в развитии генетики. Работы Н. К. Кольцова, Н. И. Вавилова, А. Н. Белозерского, Г. Д. Карпеченко, Ю. А. Филипченко, Н. В. Тимофеева-Ресовского.

Основные генетические понятия и символы. Гомологичные хромосомы, аллельные гены, альтернативные признаки, доминантный и рецессивный признак, гомозигота, гетерозигота, чистая линия, гибриды, генотип, фенотип.

Основные методы генетики: гибридологический, цитологический, молекулярно-генетический.

#### Демонстрации

Портреты: Г. Мендель, Г. де Фриз, Т. Морган, Н. К. Кольцов, Н. И. Вавилов, А. Н. Белозерский, Г. Д. Карпеченко, Ю. А. Филипченко, Н. В. Тимофеев-Ресовский.

Таблицы и схемы: «Методы генетики», «Схемы скрещивания».

**Лабораторная работа** «Дрозофила как объект генетических исследований».

## Тема 12. Закономерности наследственности

Моногибридное скрещивание. Первый закон Менделя — закон единообразия гибридов первого поколения. Правило доминирования. Второй закон Менделя — закон расщепления признаков. Цитологические основы моногибридного скрещивания. Гипотеза чистоты гамет.

Анализирующее скрещивание. Промежуточный характер наследования. Расщепление признаков при неполном доминировании.

Дигибридное скрещивание. Третий закон Менделя – закон независимого наследования признаков. Цитологические основы дигибридного скрещивания.

Сцепленное наследование признаков. Работы Т. Моргана. Сцепленное наследование генов, нарушение сцепления между генами. Хромосомная теория наследственности.

Генетика пола. Хромосомный механизм определения пола. Аутосомы и половые хромосомы. Гомогаметный и гетерогаметный пол. Генетическая структура половых хромосом. Наследование признаков, сцепленных с полом.

Генотип как целостная система. Плейотропия – множественное действие гена. Множественный аллелизм. Взаимодействие неаллельных генов. Комплементарность. Эпистаз. Полимерия.

Генетический контроль развития растений, животных и человека, а также физиологических процессов, поведения и когнитивных функций. Генетические механизмы симбиогенеза, механизмы взаимодействия «хозяин – паразит» и «хозяин – микробиом». Генетические аспекты контроля и изменения наследственной информации в поколениях клеток и организмов.

## Демонстрации

Портреты: Г. Мендель, Т. Морган.

Таблицы и схемы: «Первый и второй законы Менделя», «Третий закон Менделя», «Анализирующее скрещивание», «Неполное доминирование», «Сцепленное наследование признаков у дрозофилы», «Генетика пола»,

«Кариотип человека», «Кариотип дрозофилы», «Кариотип птицы», «Множественный аллелизм», «Взаимодействие генов».

Оборудование: модель для демонстрации законов единообразия гибридов первого поколения и расщепления признаков, модель для демонстрации закона независимого наследования признаков, модель для демонстрации сцепленного наследования признаков, световой микроскоп, микропрепарат: «Дрозофила».

**Практическая работа** «Изучение результатов моногибридного скрещивания у дрозофилы».

**Практическая работа** «Изучение результатов дигибридного скрещивания у дрозофилы».

#### Тема 13. Закономерности изменчивости

Взаимодействие генотипа и среды при формировании фенотипа. Изменчивость признаков. Качественные и количественные признаки. Виды изменчивости: ненаследственная и наследственная.

Модификационная изменчивость. Роль среды в формировании модификационной изменчивости. Норма реакции признака. Вариационный ряд и вариационная кривая (В. Иоганнсен). Свойства модификационной изменчивости.

Генотипическая изменчивость. Свойства генотипической изменчивости. Виды генотипической изменчивости: комбинативная, мутационная.

Комбинативная изменчивость. Мейоз и половой процесс — основа комбинативной изменчивости. Роль комбинативной изменчивости в создании генетического разнообразия в пределах одного вида.

Мутационная изменчивость. Виды мутаций: генные, хромосомные, индуцированные Ядерные геномные. Спонтанные мутации. И цитоплазматические мутации. Соматические и половые мутации. Причины возникновения мутаций. Мутагены И ИΧ влияние организмы. Закономерности мутационного процесса. Закон гомологических рядов в наследственной изменчивости (Н.И. Вавилов). Внеядерная изменчивость и наследственность.

Эпигенетика и эпигеномика, роль эпигенетических факторов в наследовании и изменчивости фенотипических признаков у организмов.

## Демонстрации

Портреты: Г. де Фриз, В. Иоганнсен, Н. И. Вавилов.

Таблицы и схемы: «Виды изменчивости», «Модификационная изменчивость», «Комбинативная изменчивость», «Мейоз», «Оплодотворение», «Генетические заболевания человека», «Виды мутаций».

Оборудование: живые и гербарные экземпляры комнатных растений, рисунки (фотографии) животных с различными видами изменчивости.

**Лабораторная работа** «Исследование закономерностей модификационной изменчивости. Построение вариационного ряда и вариационной кривой».

**Практическая работа** «Мутации у дрозофилы (на готовых микропрепаратах)».

#### Тема 14. Генетика человека

Кариотип человека. Международная программа исследования генома человека. Методы изучения генетики человека: генеалогический, близненовый. цитогенетический, популяционно-статистический, молекулярно-генетический. Современное определение генотипа: полногеномное секвенирование, генотипирование, в том числе с помощью ПЦР-анализа. Наследственные заболевания человека. Генные и хромосомные болезни человека. Болезни с наследственной предрасположенностью. Значение медицинской генетики в предотвращении и лечении генетических заболеваний человека. Медико-генетическое консультирование. Стволовые клетки. Понятие «генетического груза». Этические аспекты исследований в области редактирования генома и стволовых клеток.

Генетические факторы повышенной чувствительности человека к физическому и химическому загрязнению окружающей среды. Генетическая предрасположенность человека к патологиям.

#### Демонстрации

Таблицы и схемы: «Кариотип человека», «Методы изучения генетики человека», «Генетические заболевания человека».

**Практическая работа** «Составление и анализ родословной».

## Тема 15. Селекция организмов

Доместикация и селекция. Зарождение селекции и доместикации. Учение Н. И. Вавилова о Центрах происхождения и многообразия культурных растений. Роль селекции в создании сортов растений и пород Закон гомологических животных. Copt, порода, штамм. Н. Вавилова, наследственной изменчивости И. его значение ДЛЯ селекционной работы.

Методы селекционной работы. Искусственный отбор: массовый и индивидуальный. Этапы комбинационной селекции. Испытание производителей по потомству. Отбор по генотипу с помощью оценки фенотипа потомства и отбор по генотипу с помощью анализа ДНК.

Искусственный мутагенез как метод селекционной работы. Радиационный и химический мутагенез как источник мутаций у культурных форм организмов. Использование геномного редактирования и методов рекомбинантных ДНК для получения исходного материала для селекции.

Получение полиплоидов. Внутривидовая гибридизация. Близкородственное скрещивание, или инбридинг. Неродственное скрещивание, или аутбридинг. Гетерозис и его причины. Использование гетерозиса в селекции. Отдалённая гибридизация. Преодоление бесплодия межвидовых гибридов. Достижения селекции растений и животных. «Зелёная революция».

Сохранение и изучение генетических ресурсов культурных растений и ИХ диких родичей ДЛЯ создания новых сортов И гибридов сельскохозяйственных культур. Изучение, сохранение управление генетическими ресурсами сельскохозяйственных и промысловых животных в целях улучшения существующих и создания новых пород, линий и кроссов, в том числе с применением современных методов научных исследований, передовых идей и перспективных технологий.

#### Демонстрации

Портреты: Н. И. Вавилов, И. В. Мичурин, Г. Д. Карпеченко, П. П. Лукьяненко, Б. Л. Астауров, Н. Борлоуг, Д. К. Беляев.

Таблицы и схемы: «Центры происхождения и многообразия культурных растений», «Закон гомологических рядов в наследственной изменчивости», «Методы селекции», «Отдалённая гибридизация», «Мутагенез».

**Лабораторная работа** «Изучение сортов культурных растений и пород домашних животных».

Лабораторная работа «Изучение методов селекции растений».

Практическая работа «Прививка растений».

Экскурсия «Основные методы и достижения селекции растений и животных (на селекционную станцию, племенную ферму, сортоиспытательный участок, в тепличное хозяйство, в лабораторию агроуниверситета или научного центра)».

#### Тема 16. Биотехнология и синтетическая биология

Объекты, используемые в биотехнологии, — клеточные и тканевые культуры, микроорганизмы, их характеристика. Традиционная биотехнология: хлебопечение, получение кисломолочных продуктов, виноделие. Микробиологический синтез. Объекты микробиологических технологий. Производство белка, аминокислот и витаминов.

Создание технологий и инструментов целенаправленного изменения и конструирования геномов с целью получения организмов и их компонентов, содержащих не встречающиеся в природе биосинтетические пути.

Клеточная инженерия. Методы культуры клеток и тканей растений и Криобанки. Соматическая гибридизация И соматический эмбриогенез. Использование гаплоидов в селекции растений. Получение моноклональных антител. Использование моноклональных и поликлональных Искусственное оплодотворение. Реконструкция медицине. яйцеклеток и клонирование животных. Метод трансплантации ядер клеток. Технологии оздоровления, культивирования и микроклонального размножения сельскохозяйственных культур.

Хромосомная и генная инженерия. Искусственный синтез гена и конструирование рекомбинантных ДНК. Создание трансгенных организмов. Достижения и перспективы хромосомной и генной инженерии. Экологические и этические проблемы генной инженерии.

Медицинские биотехнологии. Постгеномная цифровая медицина. ПЦРдиагностика. Метаболомный анализ, геноцентрический анализ протеома человека для оценки состояния его здоровья. Использование стволовых клеток. Таргетная терапия рака. 3D-биоинженерия для разработки фундаментальных основ медицинских технологий, создания комплексных тканей сочетанием технологий трёхмерного биопринтинга и скаффолдинга для решения задач персонализированной медицины.

Создание векторных вакцин с целью обеспечения комбинированной защиты от возбудителей ОРВИ, установление молекулярных механизмов функционирования РНК-содержащих вирусов, вызывающих особо опасные заболевания человека и животных.

#### Демонстрации

Таблицы и схемы: «Использование микроорганизмов в промышленном производстве», «Клеточная инженерия», «Генная инженерия».

Лабораторная работа «Изучение объектов биотехнологии».

**Практическая работа** «Получение молочнокислых продуктов».

Экскурсия «Биотехнология — важнейшая производительная сила современности (на биотехнологическое производство)».

# ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО БИОЛОГИИ НА УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

#### ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

ФГОС СОО устанавливает требования к результатам освоения обучающимися программ среднего общего образования: личностные, метапредметные и предметные.

В структуре личностных результатов освоения программы по биологии выделены следующие составляющие: осознание обучающимися российской гражданской идентичности – готовности к саморазвитию, самостоятельности самоопределению, наличие мотивации К обучению целенаправленное развитие внутренних убеждений личности на основе ключевых ценностей и исторических традиций развития биологического знания, готовность и способность обучающихся руководствоваться в своей деятельности ценностно-смысловыми установками, присущими системе биологического образования, наличие правосознания экологической культуры, способности ставить цели и строить жизненные планы.

Личностные результаты освоения программы по биологии достигаются в единстве учебной и воспитательной деятельности в соответствии с традиционными российскими социокультурными, историческими и духовнонравственными ценностями, принятыми в обществе правилами и нормами поведения и способствуют процессам самопознания, самовоспитания и саморазвития, развития внутренней позиции личности, патриотизма и уважения к закону и правопорядку, человеку труда и старшему поколению, взаимного уважения, бережного отношения к культурному наследию и традициям многонационального народа Российской Федерации, природе и окружающей среде.

Личностные результаты освоения учебного предмета «Биология» должны отражать готовность и способность обучающихся руководствоваться сформированной внутренней позицией личности, системой ценностных ориентаций, позитивных внутренних убеждений, соответствующих традиционным ценностям российского общества, расширение жизненного опыта и опыта деятельности в процессе реализации основных направлений воспитательной деятельности, в том числе в части:

#### 1) гражданского воспитания:

сформированность гражданской позиции обучающегося как активного и ответственного члена российского общества;

осознание своих конституционных прав и обязанностей, уважение закона и правопорядка;

готовность к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении биологических экспериментов;

способность определять собственную позицию по отношению к явлениям современной жизни и объяснять её;

умение учитывать в своих действиях необходимость конструктивного взаимодействия людей с разными убеждениями, культурными ценностями и социальным положением;

готовность к сотрудничеству в процессе совместного выполнения учебных, познавательных и исследовательских задач, уважительного отношения к мнению оппонентов при обсуждении спорных вопросов биологического содержания;

готовность к гуманитарной и волонтёрской деятельности;

#### 2) патриотического воспитания:

сформированность российской гражданской идентичности, патриотизма, уважения к своему народу, чувства ответственности перед Родиной, гордости за свой край, свою Родину, свой язык и культуру, прошлое и настоящее многонационального народа России;

ценностное отношение к природному наследию и памятникам природы, достижениям России в науке, искусстве, спорте, технологиях, труде;

способность оценивать вклад российских учёных в становление и развитие биологии, понимания значения биологии в познании законов природы, в жизни человека и современного общества;

идейная убеждённость, готовность к служению и защите Отечества, ответственность за его судьбу;

## 3) духовно-нравственного воспитания:

осознание духовных ценностей российского народа;

сформированность нравственного сознания, этического поведения;

способность оценивать ситуацию и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности;

осознание личного вклада в построение устойчивого будущего;

ответственное отношение к своим родителям, созданию семьи на основе осознанного принятия ценностей семейной жизни в соответствии с традициями народов России;

#### 4) эстетического воспитания:

эстетическое отношение к миру, включая эстетику быта, научного и технического творчества, спорта, труда, общественных отношений;

понимание эмоционального воздействия живой природы и её ценности;

готовность к самовыражению в разных видах искусства, стремление проявлять качества творческой личности;

# 5) физического воспитания, формирования культуры здоровья и эмоционального благополучия:

понимание и реализация здорового и безопасного образа жизни (здоровое питание, соблюдение гигиенических правил и норм, сбалансированный режим занятий и отдыха, регулярная физическая активность), бережного, ответственного и компетентного отношения к собственному физическому и психическому здоровью;

понимание ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознание последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);

#### 6) трудового воспитания:

готовность к труду, осознание ценности мастерства, трудолюбие;

готовность к активной деятельности технологической и социальной направленности, способность инициировать, планировать и самостоятельно выполнять такую деятельность;

интерес к различным сферам профессиональной деятельности, умение совершать осознанный выбор будущей профессии и реализовывать собственные жизненные планы;

готовность и способность к образованию и самообразованию на протяжении всей жизни;

#### 7) экологического воспитания:

экологически целесообразное отношение к природе как источнику жизни на Земле, основе её существования;

повышение уровня экологической культуры: приобретение опыта планирования поступков и оценки их возможных последствий для окружающей среды;

осознание глобального характера экологических проблем и путей их решения;

способность использовать приобретаемые при изучении биологии знания и умения при решении проблем, связанных с рациональным природопользованием (соблюдение правил поведения в природе, направленных на сохранение равновесия в экосистемах, охрану видов, экосистем, биосферы);

активное неприятие действий, приносящих вред окружающей природной среде, умение прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;

наличие развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, готовности к участию в практической деятельности экологической направленности;

#### 8) ценности научного познания:

сформированность мировоззрения, соответствующего современному уровню развития науки и общественной практики, основанного на диалоге культур, способствующего осознанию своего места в поликультурном мире;

совершенствование языковой и читательской культуры как средства взаимодействия между людьми и познания мира;

понимание специфики биологии как науки, осознания её роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы, человека и общества, в познании природных закономерностей и решении проблем сохранения природного равновесия;

убеждённость в значимости биологии для современной цивилизации: обеспечения нового уровня развития медицины, создание перспективных биотехнологий, способных решать ресурсные проблемы развития человечества, поиска путей выхода из глобальных экологических проблем и обеспечения перехода к устойчивому развитию, рациональному использованию природных ресурсов и формированию новых стандартов жизни;

заинтересованность в получении биологических знаний в целях повышения общей культуры, естественно-научной грамотности, как составной части функциональной грамотности обучающихся, формируемой при изучении биологии;

понимание сущности методов познания, используемых в естественных науках, способности использовать получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нём изменений, умение делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;

способность самостоятельно использовать биологические знания для решения проблем в реальных жизненных ситуациях;

осознание ценности научной деятельности, готовность осуществлять проектную и исследовательскую деятельность индивидуально и в группе;

готовность и способность к непрерывному образованию и самообразованию, к активному получению новых знаний по биологии в соответствии с жизненными потребностями.

#### МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения учебного предмета «Биология» включают: значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент И другие); учебные действия (познавательные, универсальные коммуникативные, обеспечивающие формирование функциональной регулятивные), грамотности социальной компетенции обучающихся; способность обучающихся использовать освоенные междисциплинарные, мировоззренческие действия учебные универсальные знания познавательной и социальной практике.

В результате изучения биологии на уровне среднего общего образования у обучающегося будут сформированы познавательные универсальные учебные действия, коммуникативные универсальные учебные действия, совместная деятельность.

Метапредметные результаты освоения программы среднего общего образования должны отражать:

## Овладение универсальными учебными познавательными лействиями:

#### 1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, рассматривать её всесторонне;

использовать при освоении знаний приёмы логического мышления (анализа, синтеза, сравнения, классификации, обобщения), раскрывать смысл биологических понятий (выделять их характерные признаки, устанавливать связи с другими понятиями);

определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;

использовать биологические понятия для объяснения фактов и явлений живой природы;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;

применять схемно-модельные средства для представления существенных связей и отношений в изучаемых биологических объектах, а

также противоречий разного рода, выявленных в различных информационных источниках;

разрабатывать план решения проблемы с учётом анализа имеющихся материальных и нематериальных ресурсов;

вносить коррективы в деятельность, оценивать соответствие результатов целям, оценивать риски последствий деятельности;

координировать и выполнять работу в условиях реального, виртуального и комбинированного взаимодействия;

развивать креативное мышление при решении жизненных проблем.

#### 2) базовые исследовательские действия:

владеть навыками учебно-исследовательской и проектной деятельности, навыками разрешения проблем, способностью и готовностью к самостоятельному поиску методов решения практических задач, применению различных методов познания;

использовать различные виды деятельности по получению нового знания, его интерпретации, преобразованию и применению в учебных ситуациях, в том числе при создании учебных и социальных проектов;

формировать научный тип мышления, владеть научной терминологией, ключевыми понятиями и методами;

ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

выявлять причинно-следственные связи и актуализировать задачу, выдвигать гипотезу её решения, находить аргументы для доказательства своих утверждений, задавать параметры и критерии решения;

анализировать полученные в ходе решения задачи результаты, критически оценивать их достоверность, прогнозировать изменение в новых условиях;

давать оценку новым ситуациям, оценивать приобретённый опыт;

осуществлять целенаправленный поиск переноса средств и способов действия в профессиональную среду;

уметь переносить знания в познавательную и практическую области жизнедеятельности;

уметь интегрировать знания из разных предметных областей;

выдвигать новые идеи, предлагать оригинальные подходы и решения, ставить проблемы и задачи, допускающие альтернативные решения.

## 3) работа с информацией:

ориентироваться в различных источниках информации (тексте учебного пособия, научно-популярной литературе, биологических словарях и справочниках, компьютерных базах данных, в Интернете), анализировать

информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость;

формулировать запросы и применять различные методы при поиске и отборе биологической информации, необходимой для выполнения учебных задач;

приобретать опыт использования информационно-коммуникативных технологий, совершенствовать культуру активного использования различных поисковых систем;

самостоятельно выбирать оптимальную форму представления биологической информации (схемы, графики, диаграммы, таблицы, рисунки и другое);

использовать научный язык в качестве средства при работе с биологической информацией: применять химические, физические и математические знаки и символы, формулы, аббревиатуру, номенклатуру, использовать и преобразовывать знаково-символические средства наглядности;

владеть навыками распознавания и защиты информации, информационной безопасности личности.

#### Овладение универсальными коммуникативными действиями:

#### 1) общение:

осуществлять коммуникации во всех сферах жизни, активно участвовать в диалоге или дискуссии по существу обсуждаемой темы (умение задавать вопросы, высказывать суждения относительно выполнения предлагаемой задачи, учитывать интересы и согласованность позиций других участников диалога или дискуссии);

распознавать невербальные средства общения, понимать значение социальных знаков, предпосылок возникновения конфликтных ситуаций, уметь смягчать конфликты и вести переговоры;

владеть различными способами общения и взаимодействия, понимать намерения других людей, проявлять уважительное отношение к собеседнику и в корректной форме формулировать свои возражения;

развёрнуто и логично излагать свою точку зрения с использованием языковых средств.

#### 2) совместная деятельность:

понимать и использовать преимущества командной и индивидуальной работы при решении биологической проблемы, обосновывать необходимость применения групповых форм взаимодействия при решении учебной задачи;

выбирать тематику и методы совместных действий с учётом общих интересов и возможностей каждого члена коллектива;

принимать цели совместной деятельности, организовывать и координировать действия по её достижению: составлять план действий, распределять роли с учётом мнений участников, обсуждать результаты совместной работы;

оценивать качество своего вклада и каждого участника команды в общий результат по разработанным критериям;

предлагать новые проекты, оценивать идеи с позиции новизны, оригинальности, практической значимости;

осуществлять позитивное стратегическое поведение в различных ситуациях, проявлять творчество и воображение, быть инициативным.

## Овладение универсальными регулятивными действиями:

#### 1) самоорганизация:

использовать биологические знания для выявления проблем и их решения в жизненных и учебных ситуациях;

выбирать на основе биологических знаний целевые и смысловые установки в своих действиях и поступках по отношению к живой природе, своему здоровью и здоровью окружающих;

самостоятельно осуществлять познавательную деятельность, выявлять проблемы, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;

самостоятельно составлять план решения проблемы с учётом имеющихся ресурсов, собственных возможностей и предпочтений;

давать оценку новым ситуациям;

расширять рамки учебного предмета на основе личных предпочтений;

делать осознанный выбор, аргументировать его, брать ответственность за решение;

оценивать приобретённый опыт;

способствовать формированию и проявлению широкой эрудиции в разных областях знаний, постоянно повышать свой образовательный и культурный уровень.

#### 2) самоконтроль:

давать оценку новым ситуациям, вносить коррективы в деятельность, оценивать соответствие результатов целям;

владеть навыками познавательной рефлексии как осознания совершаемых действий и мыслительных процессов, их результатов и оснований, использовать приёмы рефлексии для оценки ситуации, выбора верного решения;

уметь оценивать риски и своевременно принимать решения по их снижению;

принимать мотивы и аргументы других при анализе результатов деятельности;

#### 3) принятие себя и других:

принимать себя, понимая свои недостатки и достоинства;

принимать мотивы и аргументы других при анализе результатов деятельности;

признавать своё право и право других на ошибки;

развивать способность понимать мир с позиции другого человека.

## ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Предметные результаты освоения содержания учебного предмета «Биология» на углублённом уровне ориентированы на обеспечение профильного обучения обучающихся биологии. Они включают: специфические для биологии научные знания, умения и способы действий по освоению, интерпретации и преобразованию знаний, виды деятельности по получению новых знаний и их применению в различных учебных, а также в реальных жизненных ситуациях. Предметные результаты представлены по годам изучения.

Предметные результаты освоения учебного предмета «Биология» в 10 классе должны отражать:

сформированность знаний о месте и роли биологии в системе естественных наук, в формировании естественно-научной картины мира, в познании законов природы и решении проблем рационального природопользования, о вкладе российских и зарубежных учёных в развитие биологии;

системой биологических знаний, владение которая включает: основополагающие биологические термины и понятия (жизнь, клетка, организм, метаболизм, гомеостаз, саморегуляция, самовоспроизведение, наследственность, изменчивость, рост и развитие), биологические теории (клеточная теория Т. Шванна, М. Шлейдена, Р. Вирхова, хромосомная теория наследственности Т. Моргана), учения (Н. И. Вавилова – о центрах происхождения многообразия И культурных растений), законы (единообразия потомков первого поколения, расщепления, чистоты гамет, независимого наследования Γ. Менделя, гомологических рядов Η. И. наследственной изменчивости Вавилова), принципы (комплементарности);

владение основными методами научного познания, используемых в биологических исследованиях живых объектов (описание, измерение, наблюдение, эксперимент);

умение выделять существенные признаки: вирусов, клеток прокариот и эукариот, одноклеточных и многоклеточных организмов, в том числе бактерий, грибов, растений, животных и человека, строения органов и систем органов растений, животных, человека, процессов жизнедеятельности, протекающих в организмах растений, животных и человека, биологических процессов: обмена веществ (метаболизм), превращения энергии, брожения, автотрофного и гетеротрофного типов питания, фотосинтеза и хемосинтеза, митоза, мейоза, гаметогенеза, эмбриогенеза, постэмбрионального развития, размножения, индивидуального развития организма (онтогенеза), взаимодействия генов, гетерозиса, искусственного отбора;

умение устанавливать взаимосвязи между органоидами клетки и их функциями, строением клеток разных тканей и их функциями, между органами и системами органов у растений, животных и человека и их функциями, между системами органов и их функциями, между этапами обмена веществ, этапами клеточного цикла и жизненных циклов организмов, этапами эмбрионального развития, генотипом и фенотипом, фенотипом и факторами среды обитания;

умение выявлять отличительные признаки живых систем, в том числе растений, животных и человека;

умение использовать соответствующие аргументы, биологическую терминологию и символику для доказательства родства организмов разных систематических групп;

умение решать биологические задачи, выявлять причинно-следственные связи между исследуемыми биологическими процессами и явлениями, делать выводы и прогнозы на основании полученных результатов;

умение выполнять лабораторные и практические работы, соблюдать правила при работе с учебным и лабораторным оборудованием;

умение выдвигать гипотезы, проверять их экспериментальными средствами, формулируя цель исследования, анализировать полученные результаты и делать выводы;

умение участвовать в учебно-исследовательской работе по биологии, экологии и медицине, проводимой на базе школьных научных обществ, и публично представлять полученные результаты на ученических конференциях;

умение оценивать этические аспекты современных исследований в области биологии и медицины (клонирование, искусственное оплодотворение, направленное изменение генома и создание трансгенных организмов);

умение осуществлять осознанный выбор будущей профессиональной деятельности в области биологии, медицины, биотехнологии, ветеринарии, сельского хозяйства, пищевой промышленности, углублять познавательный интерес, направленный на осознанный выбор соответствующей профессии и продолжение биологического образования в организациях среднего профессионального и высшего образования.

## ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

|       | Наименование разделов и тем<br>программы                      | Количество | Электронные           |                        |                                          |
|-------|---------------------------------------------------------------|------------|-----------------------|------------------------|------------------------------------------|
| № п/п |                                                               | Всего      | Контрольные<br>работы | Практические<br>работы | (цифровые)<br>образовательные<br>ресурсы |
| 1     | Биология как наука                                            | 1          |                       | 0                      |                                          |
| 2     | Живые системы и их изучение                                   | 2          |                       | 0                      |                                          |
| 3     | Биология клетки                                               | 2          |                       | 0.5                    |                                          |
| 4     | Химическая организация клетки                                 | 10         |                       | 1                      |                                          |
| 5     | Строение и функции клетки                                     | 8          |                       | 2                      |                                          |
| 6     | Обмен веществ и превращение энергии в клетке                  | 9          |                       | 1                      |                                          |
| 7     | Наследственная информация и<br>реализация её в клетке         | 9          |                       | 0.5                    |                                          |
| 8     | Жизненный цикл клетки                                         | 6          |                       | 1                      |                                          |
| 9     | Строение и функции организмов                                 | 17         |                       | 1.5                    |                                          |
| 10    | Размножение и развитие организмов                             | 8          |                       | 1.5                    |                                          |
| 11    | Генетика – наука о наследственности и изменчивости организмов | 2          |                       | 0.5                    |                                          |
| 12    | Закономерности наследственности                               | 10         |                       | 1                      |                                          |
| 13    | Закономерности изменчивости                                   | 6          |                       | 1                      |                                          |
| 14    | Генетика человека                                             | 3          |                       | 0.5                    |                                          |
| 15    | Селекция организмов                                           | 4          |                       | 1                      |                                          |
| 16    | Биотехнология и синтетическая биология                        | 4          |                       |                        |                                          |
| 17    | Резервное время                                               | 1          |                       |                        |                                          |

| ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ | 102 | 0 | 13 |  |  |
|-------------------------------------|-----|---|----|--|--|
|-------------------------------------|-----|---|----|--|--|

## ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

| №<br>п/п | Тема урока                                                                                                                                                                                                   |       | Количество ча         |                        | Электронные      |                                        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------|------------------------|------------------|----------------------------------------|
|          |                                                                                                                                                                                                              | Всего | Контрольные<br>работы | Практические<br>работы | Дата<br>изучения | цифровые<br>образовательные<br>ресурсы |
|          | Тема «Биология как наука» (1 ч)                                                                                                                                                                              |       |                       |                        |                  |                                        |
| 1        | Биология как комплексная наука и как часть современного общества                                                                                                                                             | 1     | 0                     | 0                      | 02.09.2024       |                                        |
|          | Тема «Живые системы и их изучение» (2 ч)                                                                                                                                                                     |       |                       |                        |                  |                                        |
| 2        | Живые системы и их свойства                                                                                                                                                                                  | 1     | 0                     | 0                      | 03.09.2024       |                                        |
| 3        | Уровневая организация живых систем                                                                                                                                                                           | 1     | 0                     | 0                      | 06.09.2024       |                                        |
|          | Тема «Биология клетки» (2 ч)                                                                                                                                                                                 |       |                       |                        |                  |                                        |
| 4        | История открытия и изучения клетки.<br>Клеточная теория                                                                                                                                                      | 1     | 0                     | 0                      | 09.09.2024       |                                        |
| 5        | Методы молекулярной и клеточной биологии. Практическая работа «Изучение методов клеточной биологии (хроматография, электрофорез, дифференциальное центрифугирование, ПЦР)». Стартовая диагностическая работа | 1     | 0                     | 0.5                    | 10.09.2024       |                                        |
|          | Тема «Химическая организация клетки» (10 ч)                                                                                                                                                                  |       |                       |                        |                  |                                        |
| 6        | Химический состав клетки. Вода                                                                                                                                                                               | 1     | 0                     | 1                      | 13.09.2024       |                                        |
| 7        | Минеральные вещества клетки, их биологическая роль                                                                                                                                                           | 1     | 0                     | 0                      | 16.09.2024       |                                        |

| 8  | Органические вещества клетки — белки. Лабораторная работа «Обнаружение белков с помощью качественных реакций»                    | 1 | 0 | 0.5 | 17.09.2024 |
|----|----------------------------------------------------------------------------------------------------------------------------------|---|---|-----|------------|
| 9  | Свойства, классификация и функции белков                                                                                         | 1 | 0 | 0   | 20.09.2024 |
| 10 | Органические вещества клетки —<br>углеводы                                                                                       | 1 | 0 | 0   | 23.09.2024 |
| 11 | Органические вещества клетки — липиды                                                                                            | 1 | 0 | 0   | 24.09.2024 |
| 12 | Нуклеиновые кислоты. ДНК и РНК. Лабораторная работа «Исследование нуклеиновых кислот, выделенных из клеток различных организмов» | 1 | 0 | 0.5 | 27.09.2024 |
| 13 | Строение и функции АТФ. Другие нуклеозидтрифосфаты (НТФ)                                                                         | 1 | 0 | 0   | 30.09.2024 |
| 14 | Секвенирование ДНК. Методы геномики, транскриптомики, протеомики                                                                 | 1 | 0 | 0   | 01.10.2024 |
| 15 | Методы структурной биологии                                                                                                      | 1 | 0 | 0   | 04.10.2024 |
|    | Тема «Строение и функции клетки» (8<br>ч)                                                                                        |   |   |     |            |
| 16 | Типы клеток. Прокариотическая клетка                                                                                             | 1 | 0 | 0   | 07.10.2024 |
| 17 | Строение эукариотической клетки. Практическая работа «Изучение свойств клеточной мембраны»                                       | 1 | 0 | 0.5 | 08.10.2024 |
| 18 | Поверхностный аппарат клетки                                                                                                     | 1 | 0 | 0   | 11.10.2024 |
| 19 | Одномембранные органоиды клетки. Практическая работа «Изучение                                                                   | 1 | 0 | 0.5 | 14.10.2024 |

|    | движения цитоплазмы в растительных клетках»                                                                                                                                     |   |   |     |            |  |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|------------|--|
| 20 | Полуавтономные органоиды клетки: митохондрии, пластиды. Лабораторная работа «Исследование плазмолиза и деплазмолиза в растительных клетках»                                     | 1 | 0 | 0.5 | 15.10.2024 |  |
| 21 | Немембранные органоиды клетки                                                                                                                                                   | 1 | 0 | 0   | 18.10.2024 |  |
| 22 | Строение и функции ядра                                                                                                                                                         | 1 | 0 | 0   | 21.10.2024 |  |
| 23 | Сравнительная характеристика клеток эукариот. Лабораторная работа «Изучение строения клеток различных организмов»                                                               | 1 | 0 | 0.5 | 22.10.2024 |  |
|    | Тема «Обмен веществ и превращение энергии в клетке» (9 ч)                                                                                                                       |   |   |     |            |  |
| 24 | Ассимиляция и диссимиляция — две стороны метаболизма. Типы обмена веществ. Лабораторная работа «Изучение каталитической активности ферментов (на примере амилазы или каталазы)» | 1 | 0 | 0   | 25.10.2024 |  |
| 25 | Ферментативный характер реакций клеточного метаболизма. Лабораторная работа «Изучение ферментативного расщепления пероксида водорода в растительных и животных клетках»         | 1 | 0 | 0.5 | 05.11.2024 |  |
| 26 | Белки-активаторы и белки-ингибиторы                                                                                                                                             | 1 | 0 | 0   | 08.11.2024 |  |
| 27 | Автотрофный тип обмена веществ                                                                                                                                                  | 1 | 0 | 0   | 11.11.2024 |  |
| 28 | Фотосинтез                                                                                                                                                                      | 1 | 0 | 0   |            |  |

|    |                                                                                                       |   |   |     | 12.11.2024 |  |
|----|-------------------------------------------------------------------------------------------------------|---|---|-----|------------|--|
| 29 | Хемосинтез. Лабораторная работа<br>«Сравнение процессов фотосинтеза и<br>хемосинтеза»                 | 1 | 0 | 0.5 | 15.11.2024 |  |
| 30 | Анаэробные организмы. Виды брожения. Лабораторная работа «Сравнение процессов брожения и дыхания»     | 1 | 0 | 0   | 18.11.2024 |  |
| 31 | Аэробные организмы. Этапы энергетического обмена                                                      | 1 | 0 | 0   | 19.11.2024 |  |
| 32 | Энергия мембранного градиента протонов. Синтез АТФ: работа протонной АТФ-синтазы                      | 1 | 0 | 0   | 22.11.2024 |  |
|    | Тема «Наследственная информация и реализация её в клетке» (9 ч)                                       |   |   |     |            |  |
| 33 | Реакции матричного синтеза                                                                            | 1 | 0 | 0   | 25.11.2024 |  |
| 34 | Транскрипция— матричный синтез<br>РНК                                                                 | 1 | 0 | 0   | 26.11.2024 |  |
| 35 | Трансляция и её этапы                                                                                 | 1 | 0 | 0   | 29.11.2024 |  |
| 36 | Кодирование аминокислот. Роль рибосом в биосинтезе белка                                              | 1 | 0 | 0   | 02.12.2024 |  |
| 37 | Организация генома у прокариот и<br>эукариот                                                          | 1 | 0 | 0   | 03.12.2024 |  |
| 38 | Молекулярные механизмы экспрессии генов у эукариот                                                    | 1 | 0 | 0   | 06.12.2024 |  |
| 39 | Вирусы — внеклеточные формы жизни и облигатные паразиты. Практическая работа «Создание модели вируса» | 1 | 0 | 0.5 | 09.12.2024 |  |
| 40 | Вирусные заболевания человека, животных, растений                                                     | 1 | 0 | 0   | 10.12.2024 |  |

| 41 | Нанотехнологии в биологии и медицине                                                                                                     | 1 | 0 | 0   | 20.12.2024 |
|----|------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|------------|
|    | Тема «Жизненный цикл клетки» (6 ч)                                                                                                       |   |   |     |            |
| 42 | Жизненный цикл клетки                                                                                                                    | 1 | 0 | 0   | 23.12.2024 |
| 43 | Матричный синтез ДНК                                                                                                                     | 1 | 0 | 0   | 24.12.2024 |
| 44 | Хромосомы. Лабораторная работа «Изучение хромосом на готовых микропрепаратах»                                                            | 1 | 0 | 0.5 | 27.12.2024 |
| 45 | Деление клетки — митоз                                                                                                                   | 1 | 0 | 0   | 13.01.2025 |
| 46 | Типы клеток. Кариокинез и цитокинез. Лабораторная работа «Наблюдение митоза в клетках кончика корешка лука (на готовых микропрепаратах)» | 1 | 0 | 0.5 | 14.01.2025 |
| 47 | Регуляция жизненного цикла клеток                                                                                                        | 1 | 0 | 0   | 17.01.2025 |
|    | Тема «Строение и функции организмов» (17 ч)                                                                                              |   |   |     |            |
| 48 | Организм как единое целое                                                                                                                | 1 | 0 | 0   | 20.01.2025 |
| 49 | Ткани растений. Лабораторная работа «Изучение тканей растений»                                                                           | 1 | 0 | 0.5 | 21.01.2025 |
| 50 | Ткани животных и человека.<br>Лабораторная работа «Изучение тканей животных»                                                             | 1 | 0 | 0.5 | 24.01.2025 |
| 51 | Органы. Системы органов.<br>Лабораторная работа «Изучение органов<br>цветкового растения»                                                | 1 | 0 | 0.5 | 27.01.2025 |
| 52 | Опора тела организмов                                                                                                                    | 1 | 0 | 0   | 28.01.2025 |

| 53 | Движение организмов                                               | 1 | 0 | 0 | 31.01.2025 |
|----|-------------------------------------------------------------------|---|---|---|------------|
| 54 | Питание организмов                                                | 1 | 0 | 0 | 03.02.2025 |
| 55 | Питание позвоночных животных.<br>Пищеварительная система человека | 1 | 0 | 0 | 04.02.2025 |
| 56 | Дыхание организмов                                                | 1 | 0 | 0 | 07.02.2025 |
| 57 | Дыхание позвоночных животных и<br>человека                        | 1 | 0 | 0 | 10.02.2025 |
| 58 | Транспорт веществ у организмов                                    | 1 | 0 | 0 | 11.02.2025 |
| 59 | Кровеносная система позвоночных животных и человека               | 1 | 0 | 0 | 14.02.2025 |
| 60 | Выделение у организмов                                            | 1 | 0 | 0 | 17.02.2025 |
| 61 | Защита у организмов                                               | 1 | 0 | 0 | 18.02.2025 |
| 62 | Иммунная система человека                                         | 1 | 0 | 0 | 21.02.2025 |
| 63 | Раздражимость и регуляция у<br>организмов                         | 1 | 0 |   | 24.02.2025 |
| 64 | Гуморальная регуляция и эндокринная система животных и человека   | 1 | 0 | 0 | 25.02.2025 |
|    | Тема «Размножение и развитие организмов» (8 ч)                    |   |   |   |            |
| 65 | Формы размножения организмов                                      | 1 | 0 | 0 | 28.02.2025 |
| 66 | Половое размножение                                               | 1 | 0 | 0 | 03.03.2025 |
| 67 | Мейоз                                                             | 1 | 0 | 0 | 04.03.2025 |

| 68 | Гаметогенез. Образование и развитие половых клеток. Лабораторная работа «Изучение строения половых клеток на готовых микропрепаратах»               | 1 | 0 | 0.5 | 07.03.2025 |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|------------|--|
| 69 | Индивидуальное развитие организмов — онтогенез                                                                                                      | 1 | 0 | 0   | 10.03.2025 |  |
| 70 | Закладка органов и тканей из<br>зародышевых листков                                                                                                 | 1 | 0 | 0   | 11.03.2025 |  |
| 71 | Рост и развитие животных. Лабораторная работа «Выявление признаков сходства зародышей позвоночных животных»                                         | 1 | 0 | 0.5 | 14.03.2025 |  |
| 72 | Размножение и развитие растений.<br>Лабораторная работа «Строение органов размножения высших растений»                                              | 1 | 0 | 0.5 | 17.03.2025 |  |
|    | Тема «Генетика – наука о наследственности и изменчивости организмов» (2 ч)                                                                          |   |   |     |            |  |
| 73 | История становления и развития<br>генетики как науки                                                                                                | 1 | 0 | 0   | 18.03.2025 |  |
| 74 | Основные понятия и символы генетики.<br>Лабораторная работа «Дрозофила как<br>объект генетических исследований»                                     | 1 | 0 | 0.5 | 21.03.2025 |  |
|    | Тема «Закономерности<br>наследственности» (10 ч)                                                                                                    |   |   |     |            |  |
| 75 | Закономерности наследования признаков. Моногибридное скрещивание. Практическая работа "Изучение результатов моногибридного скрещивания у дрозофилы" | 1 | 0 | 0.5 | 31.03.2025 |  |
| 76 | Цитологические основы моногибридного скрещивания                                                                                                    | 1 | 0 | 0   | 01.04.2025 |  |

| 77 | Анализирующее скрещивание.<br>Неполное доминирование                                                                                                                         | 1 | 0 | 0   | 04.04.2025 |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----|------------|--|
| 78 | Дигибридное скрещивание. Практическая работа «Изучение результатов дигибридного скрещивания у дрозофилы»                                                                     | 1 | 0 | 0.5 | 07.04.2025 |  |
| 79 | Цитологические основы дигибридного<br>скрещивания                                                                                                                            | 1 | 0 | 0   | 08.04.2025 |  |
| 80 | Сцепленное наследование признаков                                                                                                                                            | 1 | 0 | 0   | 11.04.2025 |  |
| 81 | Хромосомная теория наследственности                                                                                                                                          | 1 | 0 | 0   | 14.04.2025 |  |
| 82 | Генетика пола                                                                                                                                                                | 1 | 0 | 0   | 15.04.2025 |  |
| 83 | Генотип как целостная система                                                                                                                                                | 1 | 0 | 0   | 18.04.2025 |  |
| 84 | Генетический контроль развития растений, животных и человека                                                                                                                 | 1 | 0 | 0   | 21.04.2025 |  |
|    | Тема «Закономерности изменчивости»                                                                                                                                           |   |   |     |            |  |
| 85 | Изменчивость признаков. Виды изменчивости                                                                                                                                    | 1 | 0 | 0   | 22.04.2025 |  |
| 86 | Модификационная изменчивость                                                                                                                                                 | 1 | 0 | 0   | 25.04.2025 |  |
| 87 | Вариационный ряд и вариационная кривая. Лабораторная работа «Исследование закономерностей модификационной изменчивости. Построение вариационного ряда и вариационной кривой» | 1 | 0 | 0.5 | 28.04.2025 |  |
| 88 | Генотипическая изменчивость.<br>Комбинативная изменчивость                                                                                                                   | 1 | 0 | 0   | 29.04.2025 |  |

| 89 | Мутационная изменчивость. Практическая работа «Мутации у дрозофилы (на готовых микропрепаратах)»               | 1 | 0 | 0.5 | 02.05.2025 |  |
|----|----------------------------------------------------------------------------------------------------------------|---|---|-----|------------|--|
| 90 | Закономерности мутационного процесса. Эпигенетика и эпигеномика                                                | 1 | 0 | 0   | 05.05.2025 |  |
|    | Тема «Генетика человека» (3 ч)                                                                                 |   |   |     |            |  |
| 91 | Генетика человека. Практическая работа «Составление и анализ родословной»                                      | 1 | 0 | 0.5 | 06.05.2025 |  |
| 92 | Методы медицинской генетики                                                                                    | 1 | 0 | 0   | 12.05.2025 |  |
| 93 | Значение медицинской генетики в предотвращении и лечении генетических заболеваний человека                     | 1 | 0 | 0   | 13.05.2025 |  |
|    | Тема «Селекция организмов» (4 ч)                                                                               |   |   |     |            |  |
| 94 | Основные понятия селекции. Лабораторная работа «Изучение сортов культурных растений и пород домашних животных» | 1 | 0 | 0.5 | 16.05.2025 |  |
| 95 | Методы селекционной работы.<br>Лабораторная работа «Изучение методов<br>селекции растений»                     | 1 | 0 | 0.5 | 19.05.2025 |  |
| 96 | Достижения селекции растений и животных. Практическая работа «Прививка растений»                               | 1 | 0 | 0   | 20.05.2025 |  |
| 97 | Сохранение, изучение и использование генетических ресурсов                                                     | 1 | 0 | 0   | 23.05.2025 |  |
|    | Тема «Биотехнология и                                                                                          |   |   |     |            |  |
|    | синтетическая биология» (4 ч)                                                                                  |   |   |     |            |  |
| 98 | Биотехнология как наука и отрасль производства. Практическая работа «Изучение объектов биотехнологии»          | 1 | 0 | 0.5 | 26.05.2025 |  |

| 99                                               | Основные направления синтетической<br>биологии | 1   | 0 | 0    | 27.05.2025 |
|--------------------------------------------------|------------------------------------------------|-----|---|------|------------|
| 100                                              | Хромосомная и генная инженерия                 | 1   | 0 | 0    | 29.05.2025 |
| 101                                              | Медицинские биотехнологии                      | 1   | 0 | 0    |            |
| 102 Повторение, обобщение, систематизация знаний |                                                | 1   | 0 | 0    |            |
| 1                                                | ЕЕ КОЛИЧЕСТВО ЧАСОВ ПО<br>РАММЕ                | 102 | 0 | 14.5 |            |

### ПРОВЕРЯЕМЫЕ ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

| Код<br>проверяемого<br>результата | Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования                                                                                                                                                                                                                                                                                     |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                 | Сформированность знаний о месте и роли биологии в системе научного знания естественных наук, в формировании современной естественно-научной картины мира и научного мировоззрения; о вкладе российских и зарубежных учёных-биологов в развитие биологии; функциональной грамотности человека для решения жизненных задач                                                                      |
| 2                                 | Умение раскрывать содержание биологических терминов и понятий: жизнь, клетка, организм; метаболизм (обмен веществ и превращение энергии), гомеостаз (саморегуляция), уровневая организация живых систем, самовоспроизведение (репродукция), наследственность, изменчивость, рост и развитие                                                                                                   |
| 3                                 | Умение излагать биологические теории (клеточная, хромосомная, мутационная), законы (Г. Менделя, Т. Моргана, Н.И. Вавилова) и учения (о центрах многообразия и происхождения культурных растений Н.И. Вавилова), определять границы их применимости к живым системам                                                                                                                           |
| 4                                 | Умение владеть методами научного познания в биологии (наблюдение и описание живых систем, процессов и явлений; организация и проведение биологического эксперимента, выдвижение гипотезы; выявление зависимости между исследуемыми величинами, объяснение полученных результатов, использованных научных понятий, теорий и законов; умение делать выводы на основании полученных результатов) |
| 5                                 | Умение выделять существенные признаки вирусов, клеток прокариот и эукариот, одноклеточных и многоклеточных организмов; особенности процессов обмена веществ и превращения энергии в клетке, фотосинтеза, пластического и энергетического обмена, хемосинтеза, митоза, мейоза, оплодотворения, размножения, индивидуального развития организма (онтогенез)                                     |
| 6                                 | Умение применять полученные знания для объяснения                                                                                                                                                                                                                                                                                                                                             |

|    | биологических процессов и явлений, для принятия практических решений в повседневной жизни в целях обеспечения безопасности своего здоровья и здоровья окружающих людей, соблюдения норм грамотного поведения в окружающей природной среде; понимание необходимости использования достижений современной биологии и биотехнологий для рационального природопользования |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Умение решать элементарные генетические задачи на моно- и дигибридное скрещивание, сцепленное наследование; составлять схемы моногибридного скрещивания для предсказания наследования признаков у организмов                                                                                                                                                          |
| 8  | Умение выполнять лабораторные и практические работы, соблюдать правила при работе с учебным и лабораторным оборудованием                                                                                                                                                                                                                                              |
| 9  | Умение критически оценивать и интерпретировать информацию биологического содержания, включающую псевдонаучные знания из различных источников (СМИ, научно-популярные материалы); этические аспекты современных исследований в биологии, медицине, биотехнологии                                                                                                       |
| 10 | Умение создавать собственные письменные и устные сообщения, обобщая биологическую информацию из нескольких источников, грамотно использовать понятийный аппарат биологии                                                                                                                                                                                              |

| Код<br>проверяемого<br>результата | Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования                                                                                                                                                                                                                |
|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                                 | Сформированность знаний о месте и роли биологии в системе научного знания естественных наук, в формировании современной естественно-научной картины мира и научного мировоззрения; о вкладе российских и зарубежных учёных-биологов в развитие биологии; функциональной грамотности человека для решения жизненных задач |
| 2                                 | Умение раскрывать содержание биологических терминов и понятий: вид, популяция, генофонд, эволюция, движущие силы (факторы) эволюции, приспособленность организмов, видообразование, экологические факторы, экосистема,                                                                                                   |

|   | продуценты, консументы, редуценты, цепи питания, экологическая пирамида, биогеоценоз, биосфера                                                                                                                                                                                                                                                                                                                                                                                                   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | Умение излагать биологические теории (эволюционная теория Ч. Дарвина, синтетическая теория эволюции), законы и закономерности (зародышевого сходства К.М. Бэра, чередования главных направлений и путей эволюции А.Н. Северцова, учения о биосфере В.И. Вернадского), определять границы их применимости к живым системам                                                                                                                                                                        |
| 4 | Умение владеть методами научного познания в биологии (наблюдение и описание живых систем, процессов и явлений; организация и проведение биологического эксперимента, выдвижение гипотезы; выявление зависимости между исследуемыми величинами, объяснение полученных результатов, использованных научных понятий, теорий и законов; умение делать выводы на основании полученных результатов)                                                                                                    |
| 5 | Умение выделять существенные признаки строения биологических объектов: видов, популяций, продуцентов, консументов, редуцентов, биогеоценозов и экосистем; особенности процессов наследственной изменчивости, естественного отбора, видообразования, приспособленности организмов, действия экологических факторов на организмы, переноса веществ и потока энергии в экосистемах, антропогенных изменений в экосистемах своей местности, круговорота веществ и биогеохимических циклов в биосфере |
| 6 | Умение применять полученные знания для объяснения биологических процессов и явлений, для принятия практических решений в повседневной жизни в целях обеспечения безопасности своего здоровья и здоровья окружающих людей, соблюдения норм грамотного поведения в окружающей природной среде; понимание необходимости использования достижений современной биологии для рационального природопользования                                                                                          |
| 7 | Умение решать элементарные биологические задачи, составлять схемы переноса веществ и энергии в экосистемах (цепи питания)                                                                                                                                                                                                                                                                                                                                                                        |
| 8 | Умение выполнять лабораторные и практические работы, соблюдать правила при работе с учебным и лабораторным оборудованием                                                                                                                                                                                                                                                                                                                                                                         |
| 9 | Умение критически оценивать и интерпретировать информацию биологического содержания, включающую псевдонаучные знания                                                                                                                                                                                                                                                                                                                                                                             |

|                                                   | из различных источников (СМИ, научно-популярные материалы); |  |  |
|---------------------------------------------------|-------------------------------------------------------------|--|--|
|                                                   | рассматривать глобальные экологические проблемы             |  |  |
|                                                   | современности, формировать по отношению к ним собственную   |  |  |
|                                                   | позицию                                                     |  |  |
|                                                   | Умение создавать собственные письменные и устные сообщения, |  |  |
| 10                                                | обобщая биологическую информацию из нескольких источников,  |  |  |
| грамотно использовать понятийный аппарат биологии |                                                             |  |  |

## ПРОВЕРЯЕМЫЕ ЭЛЕМЕНТЫ СОДЕРЖАНИЯ

| Код | Проверяемый элемент содержания                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1   | Биология как наука                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1.1 | Биология — наука о живой природе. Роль биологии в формировании современной научной картины мира. Система биологических наук                                                                                                                                                                                                                                                                                                                                          |  |  |
| 1.2 | Методы познания живой природы (наблюдение, эксперимент, описание, измерение, классификация, моделирование, статистическая обработка данных)                                                                                                                                                                                                                                                                                                                          |  |  |
| 2   | Живые системы и их организация                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 2.1 | Живые системы (биосистемы) как предмет изучения биологии. Свойства биосистем и их разнообразие                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 2.2 | Уровни организации биосистем: молекулярно-генетический, клеточный, организменный, популяционно-видовой, экосистемный, биосферный                                                                                                                                                                                                                                                                                                                                     |  |  |
| 3   | Химический состав и строение клетки                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| 3.1 | Химический состав клетки. Химические элементы: макроэлементы, микроэлементы. Вода и минеральные вещества. Функции воды и минеральных веществ в клетке. Поддержание осмотического баланса                                                                                                                                                                                                                                                                             |  |  |
| 3.2 | Белки. Состав и строение белков. Аминокислоты — мономеры белков. Незаменимые и заменимые аминокислоты. Аминокислотный состав. Уровни структуры белковой молекулы (первичная, вторичная, третичная и четвертичная структура). Химические свойства белков. Биологические функции белков.  Ферменты — биологические катализаторы. Строение фермента: активный центр, субстратная специфичность. Коферменты. Витамины. Отличия ферментов от неорганических катализаторов |  |  |
| 3.3 | Углеводы: моносахариды (глюкоза, рибоза и дезоксирибоза), дисахариды (сахароза, лактоза) и полисахариды (крахмал, гликоген, целлюлоза). Биологические функции углеводов. Липиды: триглицериды, стероиды, фосфолипиды. Гидрофильно-гидрофобные свойства. Биологические функции липидов. Сравнение углеводов, белков и липидов как источников энергии                                                                                                                  |  |  |
| 3.4 | Нуклеиновые кислоты: ДНК и РНК. Нуклеотиды — мономеры нуклеиновых кислот. Строение и функции ДНК. Строение и функции РНК. АТФ: строение и функции                                                                                                                                                                                                                                                                                                                    |  |  |
| 3.5 | Цитология – наука о клетке. Клеточная теория. Методы изучения клеток                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
| 3.6 | Клетка как целостная живая система. Общие признаки клеток: замкнутая наружная мембрана, молекулы ДНК как генетический аппарат, система синтеза                                                                                                                                                                                                                                                                                                                       |  |  |

|                                                                                                                                                                                                                                                                                                         | белка                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.7                                                                                                                                                                                                                                                                                                     | Типы клеток: эукариотическая и прокариотическая. Особенности строения прокариотической клетки. Клеточная стенка бактерий. Строение эукариотической клетки. Основные отличия растительной, животной и грибной клетки                                                                                                                                                                                                                                                            |
| 3.8                                                                                                                                                                                                                                                                                                     | Поверхностные структуры клеток – клеточная стенка, гликокаликс, их функции. Плазматическая мембрана, её свойства и функции. Цитоплазма и её органоиды. Одномембранные органоиды клетки: эндоплазматическая сеть (ЭПС), аппарат Гольджи, лизосомы. Полуавтономные органоиды клетки: митохондрии, пластиды. Происхождение митохондрий и пластид. Виды пластид. Немембранные органоиды клетки: рибосомы, клеточный центр, реснички, жгутики. Функции органоидов клетки. Включения |
| 3.9                                                                                                                                                                                                                                                                                                     | Ядро – регуляторный центр клетки. Строение ядра: ядерная оболочка, кариоплазма, хроматин, ядрышко. Хромосомы                                                                                                                                                                                                                                                                                                                                                                   |
| 3.10                                                                                                                                                                                                                                                                                                    | Транспорт веществ в клетке                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4                                                                                                                                                                                                                                                                                                       | Жизнедеятельность клетки                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Обмен веществ, или метаболизм. Ассимиляция (пластический диссимиляция (энергетический обмен) — две стороны единого метаболизма. Типы обмена веществ: автотрофный и гетеротроф ферментов в обмене веществ и превращении энергии в клетке                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Фотосинтез. Световая и темновая фазы фотосинтеза. Реакции фотоси Эффективность фотосинтеза. Значение фотосинтеза для жизни на Значение условий среды на фотосинтез и способы повышения продуктивности у культурных растений.  Хемосинтез. Хемосинтезирующие бактерии. Значение хемосинтеза для на Земле |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4.3                                                                                                                                                                                                                                                                                                     | Энергетический обмен в клетке. Расщепление веществ, выделение и аккумулирование энергии в клетке. Этапы энергетического обмена. Гликолиз. Брожение и его виды. Кислородное окисление, или клеточное дыхание. Эффективность энергетического обмена                                                                                                                                                                                                                              |
| 4.4                                                                                                                                                                                                                                                                                                     | Реакции матричного синтеза. Генетическая информация и ДНК. Реализация генетической информации в клетке. Генетический код и его свойства. Транскрипция — матричный синтез РНК. Трансляция — биосинтез белка. Кодирование аминокислот. Роль рибосом в биосинтезе белка                                                                                                                                                                                                           |
| 4.5                                                                                                                                                                                                                                                                                                     | Неклеточные формы жизни — вирусы. История открытия вирусов (Д.И. Ивановский). Особенности строения и жизнедеятельности вирусов. Бактериофаги. Болезни растений, животных и человека, вызываемые вирусами. Вирус иммунодефицита человека (ВИЧ) — возбудитель СПИДа. Профилактика                                                                                                                                                                                                |

|                                                                                                                                                                                                                                                   | распространения вирусных заболеваний                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 5                                                                                                                                                                                                                                                 | Размножение и индивидуальное развитие организмов                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| 5.1                                                                                                                                                                                                                                               | Клеточный цикл, или жизненный цикл клетки. Интерфаза и митоз. Процессы, протекающие в интерфазе. Репликация — реакция матричного синтеза ДНК. Строение хромосом. Хромосомный набор — кариотип. Диплоидный и гаплоидный хромосомные наборы. Хроматиды. Цитологические основы размножения и индивидуального развития организмов. Деление клетки — митоз. Стадии митоза. Процессы, происходящие на разных стадиях митоза. Биологический смысл митоза   |  |  |
| 5.2                                                                                                                                                                                                                                               | Формы размножения организмов: бесполое и половое. Виды бесполого размножения: деление надвое, почкование одно- и многоклеточных, спорообразование, вегетативное размножение. Искусственное клонирование организмов, его значение для селекции                                                                                                                                                                                                       |  |  |
| 5.3                                                                                                                                                                                                                                               | Половое размножение, его отличия от бесполого. Мейоз. Стадии мейоза. Процессы, происходящие на стадиях мейоза. Поведение хромосом в мейозе. Кроссинговер. Биологический смысл и значение мейоза                                                                                                                                                                                                                                                     |  |  |
| 5.4                                                                                                                                                                                                                                               | Гаметогенез — процесс образования половых клеток у животных. Половые железы: семенники и яичники. Образование и развитие половых клеток — гамет (сперматозоид, яйцеклетка) — сперматогенез и оогенез. Особенности строения яйцеклеток и сперматозоидов. Оплодотворение. Партеногенез                                                                                                                                                                |  |  |
| 5.5                                                                                                                                                                                                                                               | Индивидуальное развитие (онтогенез). Эмбриональное развитие (эмбриогенез). Этапы эмбрионального развития у позвоночных животных: дробление, гаструляция, органогенез. Постэмбриональное развитие. Типы постэмбрионального развития: прямое, непрямое (личиночное). Влияние среды на развитие организмов; факторы, способные вызывать врождённые уродства. Рост и развитие растений. Онтогенез цветкового растения: строение семени, стадии развития |  |  |
| 6                                                                                                                                                                                                                                                 | Наследственность и изменчивость организмов                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
| Предмет и задачи генетики. История развития генетики. Вклад розарубежных учёных в развитие генетики. Методы (гибридологический, цитогенетический, молекулярно-генетический генетические понятия. Генетическая символика, используемая скрещиваний |                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| 6.2                                                                                                                                                                                                                                               | Закономерности наследования признаков, установленные Г. Менделем. Моногибридное скрещивание. Закон единообразия гибридов первого поколения. Правило доминирования. Закон расщепления признаков. Гипотеза чистоты гамет. Полное и неполное доминирование. Дигибридное скрещивание. Закон независимого наследования признаков. Цитогенетические основы дигибридного скрещивания. Анализирующее                                                        |  |  |

|          | ornowynog Mono w popowno ovonyonoworo ovnowynowa wag ornowonowa                      |
|----------|--------------------------------------------------------------------------------------|
|          | скрещивание. Использование анализирующего скрещивания для определения генотипа особи |
|          | Сцепленное наследование признаков. Работа Т. Моргана по сцепленному                  |
|          | 1                                                                                    |
|          | наследованию генов. Нарушение сцепления генов в результате кроссинговера.            |
| 6.3      | Хромосомная теория наследственности. Генетические карты.                             |
|          | Генетика пола. Хромосомное определение пола. Аутосомы и половые                      |
|          | хромосомы. Гомогаметные и гетерогаметные организмы. Наследование                     |
|          | признаков, сцепленных с полом                                                        |
|          | Изменчивость. Виды изменчивости: ненаследственная и наследственная. Роль             |
| 6.4      | среды в ненаследственной изменчивости. Характеристика модификационной                |
| 0.4      | изменчивости. Вариационный ряд и вариационная кривая. Норма реакции                  |
|          | признака. Количественные и качественные признаки и их норма реакции.                 |
|          | Свойства модификационной изменчивости                                                |
|          | Наследственная, или генотипическая, изменчивость. Комбинативная                      |
| <i>.</i> | изменчивость. Мейоз и половой процесс – основа комбинативной                         |
| 6.5      | изменчивости. Мутационная изменчивость. Классификация мутаций: генные                |
|          | хромосомные, геномные. Частота и причины мутаций. Мутагенные факторы.                |
|          | Закон гомологических рядов в наследственной изменчивости Н.И. Вавилова               |
|          | Генетика человека. Кариотип человека. Основные методы генетики человека:             |
|          | генеалогический, близнецовый, цитогенетический, биохимический,                       |
|          | молекулярно-генетический. Современное определение генотипа:                          |
|          | полногеномное секвенирование, генотипирование, в том числе с помощью                 |
| 6.6      | ПЦР-анализа. Наследственные заболевания человека: генные болезни, болезни            |
|          | с наследственной предрасположенностью, хромосомные болезни.                          |
|          | Соматические и генеративные мутации. Принципы здорового образа жизни,                |
|          | диагностики, профилактики и лечения генетических болезней. Медико-                   |
|          | генетическое консультирование. Значение медицинской генетики в                       |
| _        | предотвращении и лечении генетических заболеваний человека                           |
| 7        | Селекция организмов. Основы биотехнологии                                            |
|          | Селекция как наука и процесс. Зарождение селекции и доместикация. Учение             |
| 7.1      | Н.И. Вавилова о центрах происхождения и многообразия культурных растений.            |
|          | Центры происхождения домашних животных. Сорт, порода, штамм                          |
|          | Современные методы селекции. Массовый и индивидуальный отборы в                      |
|          | селекции растений и животных. Оценка экстерьера. Близкородственное                   |
| 7.2      | скрещивание – инбридинг. Чистая линия. Скрещивание чистых линий.                     |
|          | Гетерозис, или гибридная сила. Неродственное скрещивание – аутбридинг.               |
|          | Отдалённая гибридизация и её успехи. Искусственный мутагенез и получение             |
|          | полиплоидов. Достижения селекции растений, животных и микроорганизмов                |
| 7.3      | Биотехнология как отрасль производства. Генная инженерия. Этапы создания             |

рекомбинантной ДНК и трансгенных организмов. Клеточная инженерия. Клеточные культуры. Микроклональное размножение растений. Клонирование высокопродуктивных сельскохозяйственных организмов. Экологические и этические проблемы. ГМО – генетически модифицированные организмы

| Код                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Проверяемый элемент содержания                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Эволюционная биология                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Эволюционная теория и её место в биологии.  Свидетельства эволюции. Палеонтологические: последовательность в видов в палеонтологической летописи, переходные формы. Биогеогра сходство и различие фаун и флор материков и островов. Эмбриоло сходства и различия эмбрионов разных видов позвоночных. Срав анатомические: гомологичные, аналогичные, рудиментарные органы, Молекулярно-биохимические: сходство механизмов наследствен основных метаболических путей у всех организмов |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| Эволюционная теория Ч. Дарвина. Предпосылки возникновения дарт Движущие силы эволюции видов по Дарвину (избыточное размноже ограниченности ресурсов, неопределённая изменчивость, бор существование, естественный отбор)                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Синтетическая теория эволюции (СТЭ) и основные её положения.<br>Микроэволюция. Популяция как единица вида и эволюции                                                                                                                                                                                                                                                                                                                                                   |  |  |
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Движущие силы (факторы) эволюции видов в природе. Мутационный процесс и комбинативная изменчивость. Популяционные волны и дрейф генов. Изоляция и миграция. Естественный отбор — направляющий фактор эволюции. Формы естественного отбора.  Приспособленность организмов как результат эволюции. Примеры приспособлений у организмов. Ароморфозы и идиоадаптации.  Вид и видообразование. Критерии вида. Основные формы видообразования: географическое, экологическое |  |  |
| 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Макроэволюция. Формы эволюции: филетическая, дивергентная, конвергентная параллельная. Необратимость эволюции                                                                                                                                                                                                                                                                                                                                                          |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Возникновение и развитие жизни на Земле                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Донаучные представления о зарождении жизни. Научные гипотезы                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |

|     | возникновения жизни на Земле: абиогенез и панспермия. Химическая эволюция.  |
|-----|-----------------------------------------------------------------------------|
|     | Экспериментальное подтверждение химической эволюции. Начальные этапы        |
|     | биологической эволюции. Гипотеза РНК-мира. Первые клетки и их эволюция.     |
|     | Формирование основных групп живых организмов                                |
|     | Развитие жизни на Земле по эрам и периодам. Катархей. Архейская и           |
|     | протерозойская эры. Палеозойская эра и её периоды: кембрийский,             |
|     | ордовикский, силурийский, девонский, каменноугольный, пермский.             |
| 2.2 | Мезозойская эра и её периоды: триасовый, юрский, меловой.                   |
| 2.2 | Кайнозойская эра и её периоды: палеогеновый, неогеновый, антропогеновый.    |
|     | Характеристика климата и геологических процессов. Основные этапы эволюции   |
|     | растительного и животного мира. Ароморфозы у растений и животных.           |
|     | Появление, расцвет и вымирание групп живых организмов                       |
| 2.3 | Система органического мира как отражение эволюции. Основные                 |
| 2.5 | систематические группы организмов                                           |
|     | Эволюция человека. Антропология как наука. Развитие представлений о         |
|     | происхождении человека. Методы изучения антропогенеза. Сходства и различия  |
| 2.4 | человека и животных. Систематическое положение человека.                    |
| 2.4 | Движущие силы (факторы) антропогенеза. Наследственная изменчивость и        |
|     | естественный отбор. Общественный образ жизни, изготовление орудий труда,    |
|     | мышление, речь                                                              |
|     | Основные стадии и ветви эволюции человека: австралопитеки, Человек умелый,  |
| 2.5 | Человек прямоходящий, Человек неандертальский, Человек разумный. Находки    |
| 2.5 | ископаемых останков, время существования, область распространения, объём    |
|     | головного мозга, образ жизни, орудия                                        |
|     | Человеческие расы. Основные большие расы: европеоидная (евразийская),       |
| 2 - | негро-австралоидная (экваториальная), монголоидная (азиатско-американская). |
| 2.6 | Черты приспособленности представителей человеческих рас к условиям          |
|     | существования. Единство человеческих рас. Критика расизма                   |
| 3   | Организмы и окружающая среда                                                |
|     | Экология как наука. Задачи и разделы экологии. Методы экологических         |
| 3.1 | исследований. Экологическое мировоззрение. Среды обитания организмов:       |
|     | водная, наземно-воздушная, почвенная, внутриорганизменная                   |
|     | Экологические факторы. Классификация экологических факторов:                |
| 3.2 | абиотические, биотические и антропогенные. Действие экологических факторов  |
|     | на организмы                                                                |
| 3.3 | Абиотические факторы: свет, температура, влажность. Фотопериодизм.          |
|     |                                                                             |

|     | Приспособления организмов к действию абиотических факторов.<br>Биологические ритмы                                                                                                                                                                                                                                                                                                                                                                    |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.4 | Биотические факторы. Виды биотических взаимодействий: конкуренция, хищничество, паразитизм, мутуализм, комменсализм (нахлебничество, квартирантство), аменсализм, нейтрализм. Значение биотических взаимодействий для существования организмов в природных сообществах                                                                                                                                                                                |
| 3.5 | Экологические характеристики популяции. Основные показатели популяции: численность, плотность, рождаемость, смертность, прирост, миграция. Динамика численности популяции и её регуляция                                                                                                                                                                                                                                                              |
| 4.  | Сообщества и экологические системы                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4.1 | Сообщество организмов – биоценоз. Структуры биоценоза: видовая, пространственная, трофическая (пищевая). Виды-доминанты. Связи в биоценозе                                                                                                                                                                                                                                                                                                            |
| 4.2 | Экологические системы (экосистемы). Понятие об экосистеме и биогеоценозе. Функциональные компоненты экосистемы: продуценты, консументы, редуценты. Круговорот веществ и поток энергии в экосистеме. Трофические (пищевые) уровни экосистемы. Пищевые цепи и сети. Основные показатели экосистемы: биомасса, продукция. Экологические пирамиды: продукции, численности, биомассы. Свойства экосистем: устойчивость, саморегуляция, развитие. Сукцессия |
| 4.3 | Природные экосистемы. Экосистемы озёр и рек. Экосистема хвойного или широколиственного леса.  Антропогенные экосистемы. Агроэкосистемы. Урбоэкосистемы. Биологическое и хозяйственное значение агроэкосистем и урбоэкосистем.  Биоразнообразие как фактор устойчивости экосистем. Сохранение биологического разнообразия на Земле                                                                                                                     |
| 4.4 | Учение В.И. Вернадского о биосфере. Границы, состав и структура биосферы. Живое вещество и его функции. Особенности биосферы как глобальной экосистемы. Динамическое равновесие и обратная связь в биосфере. Круговороты веществ и биогеохимические циклы элементов (углерода, азота). Зональность биосферы. Основные биомы суши                                                                                                                      |
| 4.5 | Человечество в биосфере Земли. Антропогенные изменения в биосфере. Глобальные экологические проблемы. Основа рационального управления природными ресурсами и их использование. Достижения биологии и охрана природы                                                                                                                                                                                                                                   |

#### СИСТЕМА ОЦЕНКИ ДОСТИЖЕНИЯ ОБУЧАЮЩИМИСЯ

### ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ НА УРОВНЯХ ОСНОВНОГО ОБЩЕГО И СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

### УЧЕБНЫЙ ПРЕДМЕТ «БИОЛОГИЯ»

Контроль учебных достижений обучающихся, включающий их проверку и оценку, является неотъемлемой составляющей (наряду с содержанием, методами, средствами, формами организации учебной деятельности) образовательного процесса. Оценивание является процедурой определения соответствия индивидуальных достижений обучающихся планируемым результатам. Свое количественное выражение оценка находит в отметке.

В соответствии с требованиями федеральных государственных образовательных стандартов общего образования (ФГОС ОО) оценка учебных достижений по биологии, как и по другим учебным предметам, реализует системно-деятельностный, уровневый и комплексный подходы.

Системно-деятельностный подход предполагает, что содержанием оценки выступают предметные и метапредметные результаты обучения, выраженные в деятельностной форме. Предметом оценки является способность обучающихся к решению учебно-практических и учебно-познавательных задач. (Это не означает, что в текущем оценивании не должно быть заданий на проверку воспроизведения изученных определений, законов и т. п.)

Уровневый подход реализуется и по отношению к содержанию оценки, отношению к интерпретации результатов. Уровневый оценивании – это использование заданий разного уровня сложности, направленных на проверку одного и того же предметного результата. Как правило, различают задания базового, повышенного и высокого уровней сложности. Уровни сложности заданий определяются особенностями проверяемых умений, контекстом задания и числом существенных операций, предусмотренных при выполнении задания. Уровневый подход к интерпретации результатов – это определение уровней освоения обучающимися предметных результатов. Число уровней определяется особенностями оценочной процедуры (при использовании в школе пятибалльной шкалы оценивания выделяют, как правило, три уровня учебных достижений).

| Отметка | Оценка уровня<br>учебных достижений | Описание учебных достижений                                                                                                                                                                                                                                                                                                                      |
|---------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| «3»     | Базовый                             | Ограниченное достижение всех планируемых результатов по критериям оценки. Воспроизведение требуемых знаний, умений, навыков по образцу. При выполнении действий испытывает затруднения, которые устраняются под контролем учителя. Исследовательские, коммуникативные, информационные регулятивные умения недостаточно сформированы              |
| «4»     | Базовый                             | Достижение планируемых результатов обучения в целом. Достаточное освоение требуемых знаний, умений, навыков, способность применять их эффективно в знакомых ситуациях. Действия самостоятельные или с незначительной помощью учителя. Исследовательские, коммуникативные, информационные, регулятивные умения в достаточной степени сформированы |
| «5»     | Повышенный                          | Полное достижение и превышение планируемых результатов обучения. Свободное владение требуемыми знаниями, умениями, навыками, способность применять их самостоятельно и эффективно не только в знакомых, но и в новых ситуациях. Исследовательские, коммуникативные, информационные, регулятивные умения достаточно развиты                       |

Комплексный подход применим для оценки предметных, метапредметных и личностных результатов обучающихся. При этом используется комплекс оценочных процедур. Такой подход призван оценить динамику образовательных достижений обучающихся с помощью различных методов и форм, дополняющих друг друга, в том числе проектов, практических, исследовательских и творческих работ; может использовать самостоятельную оценку обучающихся (самооценка, самоанализ и пр.).

### Результаты освоения образовательных программ как объект оценивания

В ФГОС ООО и ФГОС СОО содержатся требования к итоговым результатам освоения образовательных программ по биологии (отдельно для базового и углубленного уровней изучения предмета). На основе принятых ФОП по биологии, оценочные материалы для государственной итоговой аттестации, эти же требования должны лежать в основе планирования внутришкольного оценивания.

Планируемые результаты по биологии можно объединить в несколько групп:

- 1) **освоение понятийного аппарата** (использование терминов, понятий, распознавание объектов, описание значения процессов, использование законов и закономерностей для характеристики процессов);
- 2) формирование методологических умений (освоение методов научного познания, проведение опытов по наблюдению за биологическими объектами, организации и проведения биологического эксперимента, выявление зависимости между исследуемыми величинами, соблюдение правил безопасного труда при работе с лабораторным оборудованием);
- 3) решение качественных и расчетных биологических задач из области физиологии, цитологии, генетики, экологии, эволюционной биологии и другим разделам учебного предмета «Биология».
- 4) понимание прикладного значения полученных знаний (умения приводить примеры практического использования объектов и процессов в повседневной жизни, обеспечивать безопасность собственного здоровья и здоровья окружающих, грамотного поведения в окружающей среде).
- 5) умение работать с информацией (анализировать информацию из различных источников, освещать этические аспекты в биологии, формулировать и аргументировать собственную позицию, создавая собственные тексты биологического содержания).

Учителю на основании предложенного в ФОП перечня предметных результатов следует сформулировать планируемые результаты по отдельным темам курсов, и внутри каждого курса определить перечень знаний и умений,

формирование которых обеспечит достижение планируемого результата и будет служить основой для подбора заданий оценочных процедур.

#### Виды внутришкольного оценивания

На всех уровнях общего образования выделяют две большие группы оценивания — внутреннее (внутришкольное) и внешнее оценивание (государственная итоговая аттестация, всероссийские проверочные работы, мониторинговые исследования федерального, регионального и муниципального уровней).

Внутришкольное оценивание предназначается для организации процесса обучения в классе по учебным предметам и регулируется локальными актами образовательной организации.

К видам внутришкольного оценивания предметных результатов освоения образовательных программ относятся:

- стартовая диагностика, направленная на оценку общей готовности обучающихся к обучению на данном уровне образования;
- текущее оценивание, отражающее индивидуальное продвижение обучающегося в освоении программы учебного предмета;
- тематическое оценивание, направленное на выявление и оценку достижения образовательных результатов, связанных с изучением отдельных тем образовательной программы;
- промежуточное оценивание по итогам изучения крупных блоков образовательной программы, включающей несколько тем, или по формированию комплексного блока учебных действий;
- итоговое оценивание результатов освоения образовательной программы за учебный год.

В данных рекомендациях речь пойдет о текущем оценивании.

#### Текущее оценивание

Текущая оценка каждого обучающегося складывается из периодической оценки индивидуального развития в освоении программы учебного предмета «Биология». Результаты текущей оценки являются основой для индивидуализации

учебного процесса. Текущая быть формирующей оценка может (поддерживающей и направляющей усилия обучающегося, включающей его самостоятельную оценочную деятельность) И диагностической, В способствующей выявлению И осознанию учителем И обучающимся существующих проблем в обучении. Текущее оценивание желательно проводить на каждом уроке и выявлять достижения отдельных обучающихся в процессе изучения учебного материала.

В текущей оценке используются различные формы и методы проверки (устные и письменные опросы на уроках, самостоятельные проверочные, лабораторные, практические и домашние работы, индивидуальные и групповые проектные и исследовательские работы, само- и взаимооценка, рефлексия, оценочные листы и другие) с учетом особенностей учебного предмета «Биология» и методики преподавания, реализуемой учителем.

Для установления уровня освоения обучающимися каждой темы курса проводится тематическая диагностика (оценка).

Диагностика — способ получения измеряемых показателей обучения, обеспечивающих объективное и всестороннее изучение условий и результатов учебного процесса, способ прояснения всех изменений, которые происходят в познавательном процессе.

#### Критериальное оценивание

При реализации различных форм внутреннего оценивания целесообразно применять критериальный подход. Критериальное оценивание — процесс, основанный на анализе и оценке образовательных достижений обучающихся по комплексу взаимосвязанных показателей. В ряде случаев показан «балльный вес» каждой критериальной позиции, который затем учитывается при переводе суммарного балла в привычные пятибалльные отметки.

Условием критериального оценивания является предварительное ознакомление всех участников образовательного процесса, прежде всего обучающихся, с используемыми критериями.

Использование критериального подхода к описанию достижения планируемых результатов для оценки предметных и метапредметных результатов при выполнении типовых контрольных оценочных заданий позволит повысить объективность традиционной пятибалльной системы оценки

и обеспечить индивидуальное развитие обучающихся.

#### Критерии оценивания основных форм текущего оценивания

Устный опрос (индивидуальный или фронтальный). Устный опрос, особенно фронтальный позволяет оценить общее освоение учебного материала, но не дает получить полное представление об уровне освоения знаний. Индивидуальный опрос позволяет получить представление о полноте знаний ученика, глубину его суждений, самостоятельность и культуру речи. Особенностью устного ответа по биологии является использование схем и иллюстраций, таблиц, гербарных образцов, натуральных объектов.

При оценивании устных ответов целесообразно пользоваться следующими критериями:

**отметка** «**5**» ставится, если обучающийся показывает исчерпывающие знания сущности процесса, явления, теории, закона, закономерности, грамотно использует для ответа биологическую терминологию, логично о обосновано выстраивает аргументацию, способен применять знания в незнакомой ситуации, самостоятельно использовать наглядные и демонстрационные пособия и материалы; ответ правильный и полный;

**отметка «4»** ставится, если ученик показывает достаточное, хотя и неполное знание материала, допускает незначительные погрешности или расхождения с верным решением, подтверждает ответ примерами, пользуется биологической терминологией, способен применять знания в знакомой и измененной ситуациях, самостоятельно использует наглядные пособия и демонстрационные материалы; ответ правильный, но содержит определенные пробелы в изложении материала;

отметка «3» ставиться, если обучающийся показывает базовое понимание учебного материала, демонстрируя недостаточную его сформированность, имеет пробелы в знаниях, допускает ошибки и неточности в формулировке ответа, слабо аргументирует свой ответ, затрудняется в привидении примеров, иллюстрирующих процессы, явления, законы, закономерности, работает с наглядными пособиями и демонстрационными материалами исключительно по готовому образцу, без проявления самостоятельности;

**отметка** «2» ставится, если обучающийся не базовое понимание учебного материала, не выполняет задания по образцу, не может определить и исправить грубые ошибки даже при помощи учителя; не умеет работать

с демонстрационными материалами и наглядными пособиями.

**Письменные работы** проверяют знания всех обучающихся одновременно, более объективны, дают возможность получить сравнительную оценку знаний класса, выявить ошибки класса в целом и у конкретный учеников, и сделать вывод о целесообразности применяемой учителем методики преподавания.

Письменная проверка осуществляется в виде биологических диктантов, проверочных и самостоятельных работ, тестов, биологических задач.

**Биологический диктант** состоит из перечня вопросов, проверяющих знания на репродуктивном уровне, требующих быстрых и кратких ответов. Например: знание определения терминов, формулировки научных теорий, законов, числовые значения и пр. Для удобства проверки работы удобно использовать количество заданий, кратное пяти. При оценке биологического диктанта во внимание принимаются следующие критерии:

```
отметка «5» – все ответы верны 5–10–15 (100%);

отметка «4» – правильных ответов 4–8–12 (80%);

отметка «3» – правильных ответов 3–6–9 (60%);

отметка «2» – правильных ответов 2–4–6 (40%).
```

Тестирование – контроль знаний и предметных умений при помощи тестов различного типа. Тест состоит из вопросов разного типа с вариантами ответов (с выбором одного или нескольких верных ответов, с дополнением ответа, на установление соответствия, последовательности процессов и явлений и др.), известных жестких критериев, обработки и анализа результатов. Тестовые задания могут оцениваться в 1 или 2 балла в зависимости от типа тестового задания. Задания с выбором одного правильного ответа оцениваются в 1 балл, задания на установление последовательности, множественного выбора, установление соответствия, с дополнением ответа оцениваются в 2 балла при полностью верном ответе. 1 балл выставляется, если только один из символов, указанных в ответе, не соответствует эталону. В остальных случаях выставляется 0 баллов. При оценке теста во внимание принимаются следующие критерии:

**отметка «5»** – 80–100% от числа баллов;

отметка «4» – 60–79% от общего числа баллов;

отметка «3» – 40–59% от общего числа баллов;

**отметка** «2» — менее 40% от общего числа баллов, а также если ученик не приступил к работе или не представил ее на проверку.

**Биологические задачи/задания с развернутым ответом** представляют собой эффективный инструмент для развития критического мышления и работы с информацией. Они способствуют формированию важных когнитивных навыков: анализа и синтеза, сравнения и обобщения, классификации и систематизации данных. При этом важно отметить, что такие задачи часто не имеют единственно правильного алгоритма решения, что делает процесс их выполнения более творческим и исследовательским.

Биологические задачи часто содержат информацию в неявной или скрытой форме, требующей умения ее выявлять и обрабатывать. В зависимости от характера данных, представленных в условии, можно выделить три основных типа задач: задачи с полным набором необходимых данных; задачи с недостающей информацией, требующей дополнительного поиска; задачи с избыточными данными, среди которых нужно выделить существенные.

При оценке биологических задач во внимание принимаются следующие критерии:

**отметка** «**5**» ставится, если: полно раскрыто содержание ответа в соответствии с критериями; четко и правильно записаны биологические научные термины; правильно оформлена задача; в решении нет ошибок; решение сопровождается объяснением; записан ответ;

**отметка** «**4**» ставится, если: правильно оформлена задача; в решении нет ошибок; решение оформлено без объяснения или оно содержит неточности; записан ответ;

**отметка** «**3**» ставится, если: правильно оформлена задача; в решении задач допущены 1–2 ошибки; решение оформлено без объяснения; записан ответ;

**отметка** «2» ставится, если: допущены ошибки при оформлении задачи; имеются множественные ошибки в решении задач; решение оформлено без объяснения; ответ отсутствует.

Лабораторная работа — форма самостоятельной работы обучающихся по биологии, который предполагает выполнение практических упражнений по применению теоретического материала на практике под руководством учителя. Лабораторная работа является связующей между теорией и практикой. Этапы проведения лабораторной работы: обязательная предварительная теоретическая подготовка, озвучивание темы, проведение инструктажа, распределение оборудования и инструктивных карточек, контроль и коррекция действий обучающихся, запись результатов И выводов тетради, заключительная беседа.

Оценивание лабораторных работ целесообразно проводить по критериям:

отметка «5» ставится, если: выполнена работа в полном объеме с соблюдением последовательности проведения наблюдений, опытов и измерений; самостоятельно и рационально выбрано все необходимое оборудование; все опыты проведены в условиях, обеспечивающих получение результатов; в представленном отчете правильно и аккуратно выполнены все записи, таблицы, рисунки, чертежи, графики, вычисления и сделаны выводы; правильно выполнен анализ погрешностей; соблюдены требования безопасности труда;

отметка «4» ставится, если: выполнена работа в полном объеме и при условии проведения наблюдений, опытов и измерений; выбрано и подготовлено для опыта оборудование, все опыты проведены, результаты и выводы получены необходимой точностью; в представленном отчете выполнены все записи, таблицы, рисунки, чертежи, графики, вычисления и сделаны выводы; правильно выполнен анализ погрешностей; соблюдены требования безопасности труда;

отметка «З» ставится, если: работа выполнена не полностью, но объем выполненной части таков, что можно сделать выводы, или если в ходе проведения наблюдений, опытов и измерений были допущены следующие ошибки: опыт проводился в нерациональных условиях, что привело к получению результатов с большей погрешностью, или в отчете были допущены в общей сложности не более двух ошибок (в записях единиц, измерениях, в вычислениях, графиках, таблицах, схемах, анализе погрешностей и т. д.) не принципиального для данной работы характера, не повлиявших на результат выполнения, или не выполнен совсем или выполнен неверно анализ погрешностей, или работа

выполнена не полностью, однако объем выполненной части таков, что позволяет получить правильные результаты и выводы по основным, принципиально важным задачам работы;

отметка «2» ставится, если: работа выполнена не полностью и объем выполненной части работы не позволяет сделать правильные выводы, или наблюдения, опыты, измерения, вычисления, производились неправильно, или в ходе работы и в отчете обнаружились в совокупности все недостатки, отмеченные в требованиях к оценке «3»; в тех случаях, когда обучающийся показал оригинальный и наиболее рациональный подход к выполнению работы и в процессе работы, но не избежал тех или иных недостатков, оценка за выполнение работы по усмотрению учителя может быть повышена по сравнению с указанными выше нормами.

**Практическая работа** — форма самостоятельной работы обучающихся по биологии, которая предполагает выполнение практических упражнений для закрепления, углубления и развития теоретических знаний на практике по заданию и под контролем учителя.

Практическая работа может состоять из лабораторных опытов, решения задач, определения систематической принадлежности растений или животных, заданий на применение знаний в реальных ситуациях и пр.

Этапы проведения практической работы, а также оценивание варьируются в зависимости от типа работы. В случае лабораторных опытов практическую работу целесообразно оценивать по критериям для лабораторных работ, в случае решения задач следует использовать критерии для оценивания задач и т. д.

Промежуточная аттестация и итоговое оценивание. Формой является контрольная работа. Содержание контрольной работы обуславливается требованиями ФГОС и ФОП для получения информации и степени подготовки учеников требованиям ФРП по биологии. Контрольная работа может включать тестовую часть и оцениваться по критериям тестовых заданий, задания с развернутым ответом, в том числе биологические задачи (имеют прописанные критерии и оцениваются максимально 3 баллами). Критерии оценивания заданий с развернутым ответом следующие:

- **3 балла** выставляется за полный правильный ответ, включающий все необходимые элементы (три и более) и не содержащий биологических ошибок;
- **2 балла** выставляется в случае, если в ответе содержится от половины (2/3) до 3/4 элементов, указанных в эталоне, и отсутствуют биологические ошибки;
- **1 баллом** оценивается выполнение задания в том случае, если в ответе допускаются незначительные биологические неточности, раскрывается от 1/4 (1/3) до половины (2/3) элементов;

**0 баллов** выставляется при отсутствии ответа, наличии ответа не на вопрос задания или грубых биологических ошибок.

Итоговое оценивание может проводиться как в письменной, так и в устной форме. Итоговая проверка необходима не только для проверки знаний обучающихся, но и для определения степени овладения интеллектуальной и практической деятельностью. Устная проверка может осуществляться в форме зачета или экзамена. Для успешной подготовки устной проверке обучающиеся должны с начала изучения знать критерии и требования к уровню подготовки по каждой теме. Письменная проверка проводится в форме контрольной работы или итогового тестирования. В зависимости от объема контролируемого материала и продолжительности его изучения выделяют формы итоговой проверки: тематическую, за четверть, триместр, полугодие, год, итоговую аттестацию за основную школу и за среднюю школу в 11 классе.

Использование **цифровых образовательных ресурсов** (средств обучения, представленных в электронном формате) удобно, поскольку имеет встроенную систему оценивания и при использовании проверенных ресурсов (РЭШ, МЭШ, открытый банк заданий ЕГЭ и пр.) обеспечивает полноценную проверку по необходимому блоку знаний.

**Проектная деятельность** формирует у обучающихся способность действовать самостоятельно, инициативно и ответственно, используя предметные знания в качестве инструмента для решения проблемы. Учебная проектная деятельность направлена на получение субъективно новых знаний или обогащение собственного опыта обучающегося при обязательном

использовании научных методов познания природы. Она должна завершаться материальным и применимым продуктом – макет, модель, отчетные материалы.

Последовательность основных действий при выполнении проекта:

- 1. Подготовительный этап (идея проекта).
- 2. Организационный этап.
- 2.1. Планирование деятельности.
- 2.2. Исполнение проекта.
- 3. Этап представления готового продукта.
- 4. Этап оценки процесса и результатов работы.

Обязательным условием проектной деятельности является ведение дневника, в котором отражаются все этапы работы, задачи для каждого этапа и прослеживается алгоритм работы над проектом.

Оценивание проектной работы осуществляются при помощи разработанных критериев. Критерии могут разрабатываться в ОО или организацией, на базе которой проходит конкурс проектных работ.

Возможные критерии оценки проектной работы:

| Этап             | Элементы этапа              | Количество<br>баллов | Сумма<br>баллов<br>за этап |
|------------------|-----------------------------|----------------------|----------------------------|
| Подготовительный | Формулировка проблемы       | 0–3                  | 11                         |
| этап             | Определение цели            | 0–2                  |                            |
|                  | Формат продукта             | 0–2                  |                            |
|                  | Задачи проекта              | 0–2                  |                            |
|                  | Оценка необходимых ресурсов | 0–2                  |                            |
| Организационный  | Составление плана работы    | 0–3                  | 21                         |
| этап             | Работа с информацией        | 0–5                  |                            |
|                  | Создание продукта           | 0–10                 |                            |
|                  | Ведение дневника проекта    | 0–3                  |                            |
| Этап             | Содержание выступления      | 0–5                  | 15                         |
| представления    | Презентабельность продукта  | 0–5                  |                            |

| продукта    | Применимость продукта | 0–5  |    |
|-------------|-----------------------|------|----|
| Этап оценки | Рефлексия             | 0–10 | 10 |

Для выставления отметки за проектную деятельность можно прибегнуть к стандартной шкале перевода баллов в оценку:

**отметка «5»** выставляется, если обучающийся набрал суммарно 57–49 балов;

**отметка «4»** выставляется, если сумма баллов составляет 48–40 баллов; **отметка «3»** выставляется при сумме баллов 39–28 баллов;

отметка «2» выставляется, если обучающийся набрал 27 баллов и меньше.

**Исследовательская деятельность** направлена на изучение объективно существующий явлений, объектов или процессов (например, природное явление — фотосинтез). Исследование в биологии базируется на экспериментальных методах познания. Результатом исследования может быть полученное новое (условно) знание или модель процесса/явления.

Последовательность действий при выполнении научного исследования:

- 1. Выбор темы исследования (поиск имеющихся противоречий).
- 2. Постановка цели и задач исследования.
- 3. Обзор литературы по выбранной теме.
- 4. Выбор методов исследования и разработка алгоритма экспериментальной деятельности.
- 5. Проведение исследования. Процесс включает сбор данных, проведение экспериментов, наблюдений или опросов.
- 6. Интерпретация результатов. Включает обработку статистических данных, выявление закономерностей и сравнительный анализ с предыдущими исследованиями.
- 7. Оформление работы. Оформление включает структурирование материала, правильное цитирование источников и представление данных в наглядной форме (графики, таблицы).

Оценивание исследования должно осуществляться в соответствии с критериями, разработанными в образовательной организации или организацией, проводящей конкурсы исследовательских работ.

Оценивание исследовательских работ возможно осуществлять в соответствии с приведенными в таблице критериями оценивания исследовательских работ.

| Этап работы         | Элементы этапа                                         | Баллы | Сумма<br>баллов<br>за этап |  |
|---------------------|--------------------------------------------------------|-------|----------------------------|--|
| Тема исследования   | Формулировка проблемы                                  | 0–2   | 6                          |  |
|                     | Актуальность исследования                              | 0–2   | _                          |  |
|                     | Формулировка исследовательского вопроса                | 0–2   |                            |  |
| Цель и задачи       | Формулировка цели                                      | 0–2   | 4                          |  |
|                     | Соответствие задач цели работы                         | 0–2   | -                          |  |
| Обзор литературы    | Составление списка и правильное цитирование источников | 0–3   | 5                          |  |
|                     | Достоверность источников                               | 0–2   |                            |  |
| Методы исследования | Соответствие методов цели работы                       | 0–3   | 3                          |  |
| Проведение          | Сбор данных                                            | 0–2   | 5                          |  |
| исследования        | Проведение эксперимента                                | 0–3   |                            |  |
| Интерпретация       | Статистическая обработка результатов                   | 0–2   | 6                          |  |
| результатов         | Выявление закономерностей                              | 0–2   | _                          |  |
|                     | Соответствие предыдущим исследованиям по теме          | 0–2   |                            |  |
| Оформление работы   | Уникальность текста не менее 70%                       | 0–2   | 4                          |  |
|                     | Представление в наглядной форме                        | 0–2   |                            |  |

Для выставления отметки за исследовательскую деятельность можно прибегнуть к стандартной шкале перевода баллов в оценку:

**отметка «5»** выставляется, если обучающийся набрал суммарно 33–28 балов:

отметка «4» выставляется, если сумма составляет 27–22 баллов;

отметка «3» выставляется при сумме 21–16 баллов; отметка «2» выставляется, если набрано 15 баллов и меньше.

#### Рефлексия, самооценка

Основная задача формирующего оценивания — развитие рефлексии и самооценки обучающихся. Учитель, обеспечивая на уроках регулярную и постоянную обратную связь, мотивирует обучающихся совершенствовать свое обучение, осознавать критерии оценивания, вовлекаться в самооценку и рефлексию.

Эффективными приемами развития самооценки являются использование чек-листов (или листов самооценки) практически на каждом уроке и отчетов по самооценке по итогам нескольких уроков или итогам изучения темы.

Чек-листы могут предлагаться в различной форме в зависимости от формы урока и характера изучаемого материала. Самая простая форма — это таблица, в которой под общим названием «Что узнали и чему научились» перечислены задачи урока, которые формулируются в деятельностной форме: знаю формулу или закон, понимаю физический смысл величин, могу различать, могу распознать, могу привести примеры, могу объяснить, могу решить задачу, могу составить план опыта и т. п. При этом в каждом случае умение «привязывается» к конкретным элементам содержания урока.

Результаты анализа чек-листов позволяют выявить затруднения обучающихся и запланировать индивидуальную коррекционную работу на последующих уроках, а также выделить результаты (умения), которые остались не освоенными многими обучающимися класса, и запланировать дополнительные задания для формирования этих умений при работе на следующих уроках.

### УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

• Биология. Биологические системы и процессы; углубленное обучение, 10 класс/ Теремов А.В., Петросова Р.А. Общество с ограниченной ответственностью «ИОЦ МНЕМОЗИНА»

Биология, 10 класс/ Пасечник В.В., Каменский А.А., Рубцов А.М. и др.; Под редакцией Пасечника В.В. Акционерное общество «Издательство «Просвещение»

#### МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

Методическое пособие/Пасечник В.В., Акционерное общество издательство "Просвещение"

# ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

https://resh.edu.ru/subject/5/5/

http://www.en.edu.ru

https://content.edsoo.ru/lab/

http://www.school.edu.ru

http://www.fipi.ru/

http://www.rustest.ru/

http://school-collection.edu.ru/

https://bio11-vpr.sdamgia.ru/